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Contributions:

(1) First Contribution : Novels Measures on Directed Graphs

A novel centrality measure: betweenness
A novel relatedness measure: covariance

Amin Mantrach, Luh Yen, Jerome Callut, Kevin Francoisse, Masashi Shimbo, and Marco Saerens. The sum-over-paths covariance kernel:
A novel covariance measure between nodes of a directed graph. IEEE Transactions on Pattern Analysis and Machine Intelligence,
32:11121126, June, 2010.

(2) Second Contribution : Applications to Large-Scale Within-Network Classification

Nodes classification on Large-Scale, Sparse, Directed Graphs.
A novel data set collected: The U.S. Patents Citation Network

Amin Mantrach, Nicolas van Zeebroeck, Pascal Francq, Masashi Shimbo, Hugues Bersini and Marco Saerens. Semi-supervised
Classification and Betweenness Computation on Large, Sparse, Directed Graphs, to appear in Pattern Recognition, PR-D-09-01097R.

(3) Third Contribution : Applications to Large-Scale Within-Network Classification

Combining citation-based graphs with content-based data

Conclusions & Perspectives
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Network Data - Some Popular Web Sites

www.google.com

More than 30 billion of pages

www.facebook.com

More than 500 millions of users - Average user has 30 friends

en.wikipedia.com

More than 3.5 million of articles
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Network Data

Web pages are pointing to other pages

1
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4
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Figure: Web pages forming a directed graph.
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Network Data

On facebook users are linked through friendship relation

Figure: Users forming an undirected Graph. 3 / 30
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Why analyzing networks is important: An Example
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Challenges

What are the more central actors, i.e.: persons, web pages, wiki
articles, etc.

Study and analyze the network

→ Let us introduce the IRIDIA social network
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The Gang of Thirty-Five

Bersini, Hugues – Dorigo, Marco – Birattari, Mauro – Sttzle, Thomas –
Saerens, Marco – Decreton, Muriel – Coletta, Alain – De Beule, Joachim
– Lpez-Ibez, Manuel – Marchal, Bruno – O’Grady, Rehan – Scheidler,
Alexander – Trianni, Vito – Turgut, Ali Emre – Van Zeebroeck, Nicolas –
Venet, David – Walker, Nick – Weiss Solis, David – Abbaci-Gaultier,
Faza – bin Hussin, Mohamed Saifullah – Brambilla, Manuele – Brutschy,
Arne – Campo, Alexandre – Decugnire, Antal Dubois-Lacoste, Jrmie –
Ferrante, Eliseo – Lenne, Renaud – Liao, Tianjun – Mantrach, Amin –
Mathews, Nithin – Montes de Oca, Marco – Oliveira, Sabrina – Pinciroli,
Carlo – Pini, Giovanni – Stranieri, Alessandro – Yuan, Zhi Eric – Duqu,
Robin – Benedettini, Stefano – Piscopo, Carlotta – Roli, Andrea
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The Gang of Thirty-Five

To build the graph we collected for each researcher a list of the
persons with which he has the strongest interactions

Finally, we keep a (undirected) link between two persons in case of
mutual citation

Link Inference Example

Hugue’s list : Dorigo, Weiss, Amin, Thomas, Muriel

Amin’s list : Hugues, Saerens, Joachim

Hugues ←→ Amin
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The Gang of Thirty-Five

7
Hugues

9
Dorigo

10
Mauro

4
Weiss

5
Alain

6
Robin

2
Amin

28
Jeremie

24
Manu Lopez

23
Thomas

22
Montes M.

11
Arne

32
Campos

33
Antal

12
Eliseo

14
Carlo

13
Giovanni

27
Sabrina

26
Sayfullah

25
Eric

18
Manu Bramb

19
Strani

16
Rehan

29
Tianju

20
Alex Scheid.

34
Stefano

35
Andrea

21
Lucia

15
Nithin

30
Vito

31
Paola

8
Muriel

17
Ali

3
Joachim

1
Saerens
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Analyze the centrality

One measure to analyze the centrality is through the betweenness

The all paths betweenness, of Newman, consists in considering all
possible paths in the graph.

And then compute the average number of times a node appears
on the paths.
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Different possible paths
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14
Carlo

13
Giovanni

27
Sabrina
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Sayfullah

25
Eric

18
Manu Bramb

19
Strani

16
Rehan

29
Tianju

20
Alex Scheid.

34
Stefano

35
Andrea

21
Lucia

15
Nithin

30
Vito

31
Paola

8
Muriel

17
Ali

3
Joachim

1
Saerens

Favor shortest paths

10 / 30



Introduction and Context
Betweenness and Covariance

Classification of Nodes
Conclusion and Perspectives

Graph Construction
Betweenness
Similarity between Nodes

Different possible paths
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But consider also (with less weight) longer paths
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Betweenness

Therefore, we can rank the nodes according to the all paths
betweenness:

All paths

1. Thomas: 8,4%
2. Eliseo: 7.6%
3. Mauro: 5.9%
4. Marco Dorigo & Montes: 5%
5. Hugues & Arnee: 4.2%
6. Amin & Weiss: 3.4%
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However, we may prefer to decrease the importance of too long
paths, by biasing the measure in favor of short paths.
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However, we may prefer to decrease the importance of too long
paths, by biasing the measure in favor of short paths.
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Other Rankings

Tradeoff

1. Eliseo: 8.8%
2. Thomas: 8.5%
3. Mauro: 4.8%
4. Marco Dorigo: 4.5%
5. Marco Montes: 4.3%
6. Hugues: 4.1%

All paths

1. Thomas: 8,4%
2. Eliseo: 7.6%
3. Mauro: 5.9%
4. Marco Dorigo & Montes: 5%
5. Hugues & Arnee: 4.2%
6. Amin & Weiss: 3.4%

→Tradeoff exploration / exploitation

We can also bias completely the measure by considering only the
shortest-paths.
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All the spectrum...

A novel betweenness measure, with a temperature parameter giving
the possibility to set the tradeoff between exploration –
exploitation.

Shortest paths

1. Eliseo: 10%
2. Thomas: 9.8%
3. Vito: 4.8%
4. Mauro: 4,3%
5. Arne: 4.2%
6. Amin & Weiss: 4.14%

Tradeoff

1. Eliseo: 8.8%
2. Thomas: 8.5%
3. Mauro: 4.8%
4. Marco Dorigo: 4.5%
5. Marco Montes: 4.3%
6. Hugues: 4.1%

All paths

1. Thomas: 8,4%
2. Eliseo: 7.6%
3. Mauro: 5.9%
4. Dorigo & Montes: 5%
5. Hugues: 4.2%
6. Arnee: 4.2%
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Computation of the Betweenness

A Novel Data Set for the Community: The U.S. Patents Citation Network

around 3M of patents granted between 1963 and 2002

38M of (cited - citing) links - 6 broad areas (technological classes)
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Log SoP betweenness, θ = 0.1 

U.S. patent 4723129 on
Bubble jet recording method and 
apparatus in which a heating element 
generates bubbles in a liquid flow 
path to project droplets of 
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Community Detection

Another important application in graph analysis consists in
detecting communities (i.e., dense webs).

Therefore we need to assess the similarity between different pair of
nodes in the graph.

In this thesis, we introduce, based one the same framework, a novel
similarity measure between two nodes (i.e. entities) in a graph.

Novel Correlation Between Nodes in Graph

Two nodes are highly correlated if they often appear together in the
same – preferably short – path.
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Community Detection

The IRIDIA members network:
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14
Carlo

13
Giovanni
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Sayfullah

25
Eric

18
Manu Bramb

19
Strani

16
Rehan

29
Tianju

20
Alex Scheid.

34
Stefano
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Lucia

15
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30
Vito
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Paola

8
Muriel

17
Ali

3
Joachim

1
Saerens
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Community Detection

Taking only short paths, two nodes rarely appear together on the
same path just a few time → To low proportion
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Community Detection

Taking all paths, two nodes appear together pratically always → Too
high proportion
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Community Detection

By choosing a good tradeoff between exploration and exploitation,
we can obtain the following
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Community Detection
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Hugues
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4
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Saerens
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Community Detection
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Community Detection
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return
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The IRIDIA members network:
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After thesis reception

Who will attend to the after thesis reception?
This is a within-network classification problem.

Suppose, we know that some person will attend, and some will not
attend.

Can we predict for the others if they will attend or not?
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Question: Will Mauro attend to the after dinner reception?
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- Sum the similarity of Mauro with: Amin, Hugues and Eliseo ∼ 0.74
- Sum the similarity of Mauro with: Montes, Thomas and Tianju ∼ 0.97 20 / 30
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Let us classify all the nodes.
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If Marco Montes attends, how does it influence the others....
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aSop: Two nodes are considered as highly correlated if they often appear
together on the same –preferably short– path.
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Algorithms

bNRWR: Normalized expected number of visits of node j starting from
node i for walks of maximum τ steps.
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bDWALK: Measures the centrality of a node inside a specific class.
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Algorithms

bDWALK: Measures the centrality of a node inside the red class.
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Algorithms

bDWALK: Measures the centrality of a node inside the green class.
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In Summary

Time complexity: linear in the number of links, classes and steps  
applicable on large-scale graphs.

Spatial complexity: store in memory the graph and scores for
each node.
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Experiment: Application on Large Network

Category Size Proportion
Chemicals 630107 19,42%

ICT 381537 11,76%
Drugs and medical 245595 7,57 %

Electrical and electronic 575369 17,73 %
Mechanical 724022 22,31 %

Others 688375 21,21 %
Total 3245005 100%

Majority class proportion 22,31%

Table: Class distribution for the U.S. patents data set.
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Experiment: Results
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Figure: Classification rates averaged on 5 runs for an increasing labeling rate of 10, 20, 35,
50, 65, 80 and 95%.
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Experiment: Computation Time

Algorithm 1% 5% 10% 20% 35% 50% 65% 80% 95%
aSoP 769 749 972 883 658 291 313 351 337
aNRL 45 15 17 25 46 77 134 179 246

bNRWR 41 42 31 82 118 178 261 380 505
bDWALK 55 58 63 79 120 184 271 379 511

Table: Overview of cpu time in seconds needed for running an algorithm (and thus classifying
all the unlabeled nodes), averaged over 10 runs, obtained on the U.S. patents network for
labeling rates of 1, 5, 10, 20, 35, 50, 65, 80 and 95%. Results are reported for the aSoP, the
bNRWR, the bDWALK and the aNRL. The cpu used is an Intel(R) Xeon(R) CPU E5335
@2.00GHz, with 4096 KB of cache size and 8GB of RAM.
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Combine the Graph with the Information on Nodes
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Global Conclusion

We proposed a novel betweenness measure: the SoP betweenness
which is computable in linear time on large-scale sparse directed
graphs

We proposed a novel clear and precise covariance: the SoP
covariance which measure similarity between two nodes of a
directed graph

We introduce three novel algorithms for within-network
classification on large-scale sparse network with a linear complexity
in terms of labels, steps and links.

A novel data set has been collected, the U.S. patents, and is now
available to the community for benchmark purposes.
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Perspectives

Using the proposed measures for detecting communities in
large-scale network.

Apply graph mining techniques to patents analysis:

Detecting dense webs of patents (”patents thickets”)

Use wikipedia as external graph resource to improve classification
performance
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Thank you for your attention

Questions ?
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