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Abstract. Recent work on multi-objectivization has shown how a
single-objective reinforcement learning problem can be turned into
a multi-objective problem with correlated objectives, by providing
multiple reward shaping functions. The information contained in
these correlated objectives can be exploited to solve the base, single-
objective problem faster and better, given techniques specifically
aimed at handling such correlated objectives. In this paper, we iden-
tify ensemble techniques as a set of methods that is suitable to solve
multi-objectivized reinforcement learning problems. We empirically
demonstrate their use on the Pursuit domain.

1 Introduction

Reinforcement learning [6] is a framework that allows an au-
tonomous agent to adapt its behaviour in order to maximize the cu-
mulative return of a given reward signal. These agents often learn
from scratch, meaning that in more complex environments, they may
require an impractical amount of exploration before a satisfactory
level of behaviour is obtained; in other words: learning may be very
slow. A significant amount of research goes into developing tech-
niques that speed up or improve the learning [3, 7]. One of those
techniques is reward shaping, which adds a feedback signal on top
of the base reward signal, typically providing the agent with heuris-
tic knowledge about the problem it is trying to solve. If this sig-
nal is properly formulated, using a potential function over the state
space [3], reward shaping preserves the optimality of solutions, and
its sole effect is to guide the exploration behaviour of the agent. This
guidance can help the agent avoid spending time gathering expe-
rience on actions in situations that the domain expert knows to be
suboptimal. Typically only a single shaping function is applied, but
Devlin et al. [2] propose the use of multiple shaping functions, al-
lowing the inclusion of different pieces of heuristic knowledge. They
evaluate the use of a linear combination of two shaping functions in
KeepAway Soccer [4], and show improvements compared to using a
single shaping function.

Recent work on multi-objectivization abstracts and formalizes this
use of multiple shapings as turning a single-objective problem into
a multi-objective problem [1]. Applying different shaping functions
to several copies of the base reward signal turns the problem into a
multi-objective problem that preserves the total ordering of the so-
lutions, while each objective provides different heuristic knowledge.
More formally, a Markov Decision Process (MDP) with scalar re-
ward function R is multi-objectivized using potential-based shaping
functions F1 through Fm, by constructing a Multi-Objective MDP
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with vector reward function R = [R+ F1, . . . , R+ Fm]. This for-
mulation ensures that no conflicts are introduced between the objec-
tives, and that by consequence no trade-offs need to be identified,
which is the main concern in multi-objective optimization. On the
contrary, these correlated objectives all have the same target (opti-
mal solution), but each provides some different piece of heuristic
knowledge, that, when strategically combined, may speed up learn-
ing even more than using a single of the shaping functions. To date,
only a linear scalarization (weighted sum) was considered to com-
bine these objectives. In this paper, we explore ensemble techniques
as a promising set of methods to solve multi-objectivized reinforce-
ment learning problems.

2 Ensemble Techniques for Reinforcement
Learning

Ensemble techniques were developed to combine multiple algo-
rithms operating on the same problem class, in order to improve per-
formance on those problems. In reinforcement learning, these tech-
niques have been used to combine different learning algorithms (Q-
learning, SARSA, ACLA, etc.) learning on the same task [8]. The
algorithms are combined at the action selection stage, where each al-
gorithm scores every action, these scores are aggregated, and an ac-
tion is selected according to the combined scores. We investigate two
such strategies proposed by Wiering et al. [8]. With majority voting,
every algorithm scores their estimated best action with a 1, and every
other action 0. Rank voting extends this to a full ranking of the n ac-
tions, with each algorithm scoring its estimated best action n−1, and
its estimated worst action 0. These scores are then aggregated over
all algorithms through summation, yielding a combined score for ev-
ery action. Action selection strategies such as ε-greedy or Boltzmann
exploration can then use these preference values to select an action.

We apply these techniques in a fundamentally new way, not com-
bining different algorithms learning on the same signal, but by con-
structing different correlated versions of the same reward signal
(multi-objectivization), and combining different algorithms learning
on those signals. In fact, we can even use the same algorithm on every
signal, as in this case, the diversity required for ensembles to provide
a benefit lies in the signals themselves.

3 Pursuit Domain

The Pursuit domain was proposed to investigate coordination mech-
anisms in a multi-agent system. The basic idea of pursuit is that a
number of predators must capture a (number of) prey(s) by moving
through a simple gridworld. In [5], Stone and Veloso identify many
variants of the problem, and our implementation is as follows. There



are two predators and one prey, and these can move in the four car-
dinal directions as well as choose to stay in place. The prey is caught
when a predator moves onto the same gridworld cell as the prey;
predators are not allowed to share the same cell. The prey takes a
random action 20% of the time, with the rest of the time devoted
to moving away from the predators. To do that, it takes the action
that maximizes the summed distance from both predators, making
the problem harder than with a fully random prey. The predators are
controlled by Q(λ)-learning agents, and both receive a reward of 1
when the prey is caught by either one of them, and a reward of 0
the rest of the time. The predators observe the relative x and y co-
ordinates of the other predator and the prey. Tile-coding is used to
discretize the state-space, with 32 tilings, and tile-width 10, hashed
down to 4096 weights. Action selection is ε-greedy, with ε = 0.1.
Further parameters are γ = 0.9, λ = 0.9 and α = 1

10×32
.

We multi-objectivize the problem using three potential-based
shaping functions:

Proximity encourages a predator to move closer to the prey. Its po-
tential function is defined as ΦP (s) = −d(pred, prey), with d as
the Manhattan distance.

Angle encourages the predators to move to different sides of the
prey, trapping it. It is defined to maximize the angle between them
and the prey to π: ΦA(s) = arccos( x·y

|x||y| ), with x and y vectors
pointing from the prey to the two predators respectively.

Separation encourages the predators to move away from each other.
Its potential function is defined as ΦS(s) = d(pred1, pred2)
where d is again the Manhattan distance.

We will investigate both normalized and non-normalized shaping
functions, as the magnitude of a shaping relative to the basic reward
can have a significant impact on learning. Proximity and Separation
are normalized by dividing by 2 × size, with size = 20 both the
width and height of the world; Angle is normalized by dividing by π.
Furthermore, Proximity is implemented as 2×size−d(pred, prey),
so that all shaping functions are positive, and thus optimistic.

4 Results and Discussion

Tables 1 and 2 summarize the results obtained in 1000 runs of 1000
episodes each, with a maximum number of steps per episode of 5000,
for normalized and non-normalized shapings respectively. We com-
pare solving the problem using only the base reward (no shaping),
the base reward plus one of the shapings (x shaping), and a multi-
objectivized version of the problem (with all three shapings), solving
it using a linear scalarization3 or ensemble techniques. The goal is
to minimize the number of steps it takes to catch the prey, and we
measure both final and cumulative performance.

In the case of normalized shapings, using the proximity shaping
alone yields best performance, but the ensemble techniques are able
to match it in cumulative performance, yielding slightly worse fi-
nal performance. While tuning the linear scalarization weights yields
performance similar to the proximity shaping alone,4 the ensemble
techniques are able to automatically approximate the best possible
behaviour without parameter tuning.

In the non-normalized case, the difference in magnitude of the
shapings is shown to have a significant impact on performance, with
the proximity and separation shapings drowning the base reward,

3 Using uniform weights and weights that align the domains of the shapings
for normalized and non-normalized shapings respectively.

4 Results not included because of space constraints.

Variant Cumulative Final
No shaping 215794± 2128 116± 2.4
Proximity shaping 129555± 1640 88± 2.1
Angle shaping 209962± 2031 109± 2.2
Separation shaping 244513± 3461 101± 2.5
Linear scalarization 152670± 1665 96± 2.2
Majority Voting Ensemble 134899± 7106 96± 6.3
Rank Voting Ensemble 130822± 776 92± 1.6

Table 1. Cumulative and final performance for normalized shapings. The
best results and those not significantly different from the best (Student’s

t-test, p > 0.05) are indicated in bold.

Variant Cumulative Final
No shaping 217554± 2089 116± 2.4
Proximity shaping 470809± 5905 438± 10.1
Angle shaping 235667± 2625 112± 2.6
Separation shaping 1216167± 21970 1142± 33.5
Linear scalarization 203131± 3449 104± 3.3
Majority Voting Ensemble 159610± 13156 127± 14.3
Rank Voting Ensemble 142131± 11267 99± 11.2

Table 2. Cumulative and final performance for non-normalized shapings.
The best results and those not significantly different from the best (Student’s

t-test, p > 0.05) are indicated in bold.

and resulting in very bad performance. A linear scalarization with
weights compensating for this difference in magnitude can improve
performance, but again the ensemble techniques achieve best perfor-
mance without parameter tuning. They suffer less from this change
in relative magnitude between the signals, because they combine the
signals in a scale-invariant way.

These results support the hypothesis that the combination of multi-
objectivization and ensemble techniques can improve learning in reg-
ular, single-objective reinforcement learning problems.
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