
ar
X

iv
:1

00
3.

01
46

v2
 [

cs
.L

G
]

1
M

ar
 2

01
2

A Contextual-Bandit Approach to
Personalized News Article Recommendation

Lihong Li†, Wei Chu†,
†Yahoo! Labs

lihong,chuwei@yahoo-
inc.com

John Langford‡

‡Yahoo! Labs
jl@yahoo-inc.com

Robert E. Schapire+
∗

+Dept of Computer Science
Princeton University

schapire@cs.princeton.edu

ABSTRACT
Personalized web services strive to adapt their services (advertise-
ments, news articles, etc.) to individual users by making use of
both content and user information. Despite a few recent advances,
this problem remains challenging for at least two reasons. First,
web service is featured with dynamically changing pools of con-
tent, rendering traditional collaborative filtering methods inappli-
cable. Second, the scale of most web services of practical interest
calls for solutions that are both fast in learning and computation.

In this work, we model personalized recommendation of news
articles as a contextual bandit problem, a principled approach in
which a learning algorithm sequentially selects articles to serve
users based on contextual information about the users and articles,
while simultaneously adapting its article-selection strategy based
on user-click feedback to maximize total user clicks.

The contributions of this work are three-fold. First, we propose
a new, general contextual bandit algorithm that is computationally
efficient and well motivated from learning theory. Second, we ar-
gue that any bandit algorithm can be reliably evaluated offline us-
ing previously recorded random traffic. Finally, using this offline
evaluation method, we successfully applied our new algorithm to
a Yahoo! Front Page Today Module dataset containing over 33
million events. Results showed a 12.5% click lift compared to a
standard context-free bandit algorithm, and the advantage becomes
even greater when data gets more scarce.

Categories and Subject Descriptors
H.3.5 [Information Systems]: On-line Information Services; I.2.6
[Computing Methodologies]: Learning

General Terms
Algorithms, Experimentation

Keywords
Contextual bandit, web service, personalization, recommender sys-
tems, exploration/exploitation dilemma

1. INTRODUCTION
This paper addresses the challenge of identifying the most appro-

priate web-based content at the best time for individual users. Most
∗This work was done while R. Schapire visited Yahoo! Labs.

A version of this paper appears at WWW 2010, April 26–30, 2010,
Raleigh, North Carolina, USA.
.

service vendors acquire and maintain a large amount of content in
their repository, for instance, for filtering news articles [14] or for
the display of advertisements [5]. Moreover, the content of such a
web-service repository changes dynamically, undergoing frequent
insertions and deletions. In such a setting, it is crucial to quickly
identify interesting content for users. For instance, a news filter
must promptly identify the popularity of breaking news, while also
adapting to the fading value of existing, aging news stories.

It is generally difficult to model popularity and temporal changes
based solely on content information. In practice, we usually ex-
plore the unknown by collecting consumers’ feedback in real time
to evaluate the popularity of new content while monitoring changes
in its value [3]. For instance, a small amount of traffic can be des-
ignated for such exploration. Based on the users’ response (such
as clicks) to randomly selected content on this small slice of traf-
fic, the most popular content can be identified and exploited on the
remaining traffic. This strategy, with random exploration on an ε
fraction of the traffic and greedy exploitation on the rest, is known
as ε-greedy. Advanced exploration approaches such as EXP3 [8]
or UCB1 [7] could be applied as well. Intuitively, we need to dis-
tribute more traffic to new content to learn its value more quickly,
and fewer users to track temporal changes of existing content.

Recently, personalized recommendation has become a desirable
feature for websites to improve user satisfaction by tailoring con-
tent presentation to suit individual users’ needs [10]. Personal-
ization involves a process of gathering and storing user attributes,
managing content assets, and, based on an analysis of current and
past users’ behavior, delivering the individually best content to the
present user being served.

Often, both users and content are represented by sets of fea-
tures. User features may include historical activities at an aggre-
gated level as well as declared demographic information. Content
features may contain descriptive information and categories. In this
scenario, exploration and exploitation have to be deployed at an in-
dividual level since the views of different users on the same con-
tent can vary significantly. Since there may be a very large number
of possible choices or actions available, it becomes critical to rec-
ognize commonalities between content items and to transfer that
knowledge across the content pool.

Traditional recommender systems, including collaborative fil-
tering, content-based filtering and hybrid approaches, can provide
meaningful recommendations at an individual level by leveraging
users’ interests as demonstrated by their past activity. Collaborative
filtering [25], by recognizing similarities across users based on their
consumption history, provides a good recommendation solution to
the scenarios where overlap in historical consumption across users
is relatively high and the content universe is almost static. Content-
based filtering helps to identify new items which well match an

http://arxiv.org/abs/1003.0146v2

existing user’s consumption profile, but the recommended items
are always similar to the items previously taken by the user [20].
Hybrid approaches [11] have been developed by combining two
or more recommendation techniques; for example, the inability of
collaborative filtering to recommend new items is commonly alle-
viated by combining it with content-based filtering.

However, as noted above, in many web-based scenarios, the con-
tent universe undergoes frequent changes, with content popular-
ity changing over time as well. Furthermore, a significant num-
ber of visitors are likely to be entirely new with no historical con-
sumption record whatsoever; this is known as a cold-start situa-
tion [21]. These issues make traditional recommender-system ap-
proaches difficult to apply, as shown by prior empirical studies [12].
It thus becomes indispensable to learn the goodness of match be-
tween user interests and content when one or both of them are new.
However, acquiring such information can be expensive and may
reduce user satisfaction in the short term, raising the question of
optimally balancing the two competing goals: maximizing user sat-
isfaction in the long run, and gathering information about goodness
of match between user interests and content.

The above problem is indeed known as a feature-based explo-
ration/exploitation problem. In this paper, we formulate it as a con-
textual bandit problem, a principled approach in which a learning
algorithm sequentially selects articles to serve users based on con-
textual information of the user and articles, while simultaneously
adapting its article-selection strategy based on user-click feedback
to maximize total user clicks in the long run. We define a bandit
problem and then review some existing approaches in Section 2.
Then, we propose a new algorithm, LinUCB, in Section 3 which
has a similar regret analysis to the best known algorithms for com-
peting with the best linear predictor, with a lower computational
overhead. We also address the problem of offline evaluation in
Section 4, showing this is possible for any explore/exploit strat-
egy when interactions are independent and identically distributed
(i.i.d.), as might be a reasonable assumption for different users. We
then test our new algorithm and several existing algorithms using
this offline evaluation strategy in Section 5.

2. FORMULATION & RELATED WORK
In this section, we define the K-armed contextual bandit prob-

lem formally, and as an example, show how it can model the per-
sonalized news article recommendation problem. We then discuss
existing methods and their limitations.

2.1 A Multi-armed Bandit Formulation
The problem of personalized news article recommendation can

be naturally modeled as a multi-armed bandit problem with context
information. Following previous work [18], we call it a contextual
bandit.1 Formally, a contextual-bandit algorithm A proceeds in dis-
crete trials t = 1, 2, 3, . . . In trial t:

1. The algorithm observes the current user ut and a set At of
arms or actions together with their feature vectors xt,a for
a ∈ At. The vector xt,a summarizes information of both the
user ut and arm a, and will be referred to as the context.

2. Based on observed payoffs in previous trials, A chooses an
arm at ∈ At, and receives payoff rt,at whose expectation
depends on both the user ut and the arm at.

3. The algorithm then improves its arm-selection strategy with
the new observation, (xt,at , at, rt,at). It is important to em-

1In the literature, contextual bandits are sometimes called bandits
with covariate, bandits with side information, associative bandits,
and associative reinforcement learning.

phasize here that no feedback (namely, the payoff rt,a) is
observed for unchosen arms a #= at. The consequence of
this fact is discussed in more details in the next subsection.

In the process above, the total T -trial payoff of A is defined as
∑T

t=1 rt,at . Similarly, we define the optimal expected T -trial pay-
off as E

[

∑T
t=1 rt,a∗

t

]

, where a∗
t is the arm with maximum ex-

pected payoff at trial t. Our goal is to design A so that the expected
total payoff above is maximized. Equivalently, we may find an al-
gorithm so that its regret with respect to the optimal arm-selection
strategy is minimized. Here, the T -trial regret RA(T) of algorithm
A is defined formally by

RA(T)
def
= E

[

T
∑

t=1

rt,a∗

t

]

−E

[

T
∑

t=1

rt,at

]

. (1)

An important special case of the general contextual bandit prob-
lem is the well-known K-armed bandit in which (i) the arm set At

remains unchanged and contains K arms for all t, and (ii) the user
ut (or equivalently, the context (xt,1, · · · ,xt,K)) is the same for
all t. Since both the arm set and contexts are constant at every trial,
they make no difference to a bandit algorithm, and so we will also
refer to this type of bandit as a context-free bandit.

In the context of article recommendation, we may view articles
in the pool as arms. When a presented article is clicked, a payoff
of 1 is incurred; otherwise, the payoff is 0. With this definition
of payoff, the expected payoff of an article is precisely its click-
through rate (CTR), and choosing an article with maximum CTR
is equivalent to maximizing the expected number of clicks from
users, which in turn is the same as maximizing the total expected
payoff in our bandit formulation.

Furthermore, in web services we often have access to user infor-
mation which can be used to infer a user’s interest and to choose
news articles that are probably most interesting to her. For example,
it is much more likely for a male teenager to be interested in an arti-
cle about iPod products rather than retirement plans. Therefore, we
may “summarize” users and articles by a set of informative features
that describe them compactly. By doing so, a bandit algorithm can
generalize CTR information from one article/user to another, and
learn to choose good articles more quickly, especially for new users
and articles.

2.2 Existing Bandit Algorithms
The fundamental challenge in bandit problems is the need for

balancing exploration and exploitation. To minimize the regret in
Eq. (1), an algorithm A exploits its past experience to select the arm
that appears best. On the other hand, this seemingly optimal arm
may in fact be suboptimal, due to imprecision in A’s knowledge. In
order to avoid this undesired situation, A has to explore by actually
choosing seemingly suboptimal arms so as to gather more informa-
tion about them (c.f., step 3 in the bandit process defined in the pre-
vious subsection). Exploration can increase short-term regret since
some suboptimal arms may be chosen. However, obtaining infor-
mation about the arms’ average payoffs (i.e., exploration) can re-
fine A’s estimate of the arms’ payoffs and in turn reduce long-term
regret. Clearly, neither a purely exploring nor a purely exploiting
algorithm works best in general, and a good tradeoff is needed.

The context-free K-armed bandit problem has been studied by
statisticians for a long time [9, 24, 26]. One of the simplest and
most straightforward algorithms is ε-greedy. In each trial t, this
algorithm first estimates the average payoff µ̂t,a of each arm a.
Then, with probability 1 − ε, it chooses the greedy arm (i.e., the
arm with highest payoff estimate); with probability ε, it chooses a
random arm. In the limit, each arm will be tried infinitely often,

and so the payoff estimate µ̂t,a converges to the true value µa with
probability 1. Furthermore, by decaying ε appropriately (e.g., [24]),
the per-step regret, RA(T)/T , converges to 0 with probability 1.

In contrast to the unguided exploration strategy adopted by ε-
greedy, another class of algorithms generally known as upper con-
fidence bound algorithms [4, 7, 17] use a smarter way to balance
exploration and exploitation. Specifically, in trial t, these algo-
rithms estimate both the mean payoff µ̂t,a of each arm a as well
as a corresponding confidence interval ct,a, so that |µ̂t,a − µa| <
ct,a holds with high probability. They then select the arm that
achieves a highest upper confidence bound (UCB for short): at =
argmaxa (µ̂t,a + ct,a). With appropriately defined confidence in-
tervals, it can be shown that such algorithms have a small total T -
trial regret that is only logarithmic in the total number of trials T ,
which turns out to be optimal [17].

While context-free K-armed bandits are extensively studied and
well understood, the more general contextual bandit problem has
remained challenging. The EXP4 algorithm [8] uses the exponen-
tial weighting technique to achieve an Õ(

√
T) regret,2 but the com-

putational complexity may be exponential in the number of fea-
tures. Another general contextual bandit algorithm is the epoch-
greedy algorithm [18] that is similar to ε-greedy with shrinking
ε. This algorithm is computationally efficient given an oracle opti-
mizer but has the weaker regret guarantee of Õ(T 2/3).

Algorithms with stronger regret guarantees may be designed un-
der various modeling assumptions about the bandit. Assuming the
expected payoff of an arm is linear in its features, Auer [6] de-
scribes the LinRel algorithm that is essentially a UCB-type ap-
proach and shows that one of its variants has a regret of Õ(

√
T), a

significant improvement over earlier algorithms [1].
Finally, we note that there exist another class of bandit al-

gorithms based on Bayes rule, such as Gittins index meth-
ods [15]. With appropriately defined prior distributions, Bayesian
approaches may have good performance. These methods require
extensive offline engineering to obtain good prior models, and are
often computationally prohibitive without coupling with approxi-
mation techniques [2].

3. ALGORITHM
Given asymptotic optimality and the strong regret bound of UCB

methods for context-free bandit algorithms, it is tempting to de-
vise similar algorithms for contextual bandit problems. Given some
parametric form of payoff function, a number of methods exist to
estimate from data the confidence interval of the parameters with
which we can compute a UCB of the estimated arm payoff. Such
an approach, however, is expensive in general.

In this work, we show that a confidence interval can be com-
puted efficiently in closed form when the payoff model is linear,
and call this algorithm LinUCB. For convenience of exposition, we
first describe the simpler form for disjoint linear models, and then
consider the general case of hybrid models in Section 3.2. We note
LinUCB is a generic contextual bandit algorithms which applies to
applications other than personalized news article recommendation.

3.1 LinUCB with Disjoint Linear Models
Using the notation of Section 2.1, we assume the expected payoff

of an arm a is linear in its d-dimensional feature xt,a with some
unknown coefficient vector θθθ∗a; namely, for all t,

E[rt,a|xt,a] = x
"
t,aθθθ

∗
a. (2)

This model is called disjoint since the parameters are not shared
2Note Õ(·) is the same as O(·) but suppresses logarithmic factors.

among different arms. Let Da be a design matrix of dimension
m× d at trial t, whose rows correspond to m training inputs (e.g.,
m contexts that are observed previously for article a), and ba ∈
R

m be the corresponding response vector (e.g., the corresponding
m click/no-click user feedback). Applying ridge regression to the
training data (Da, ca) gives an estimate of the coefficients:

θ̂θθa = (D"
a Da + Id)

−1
D

"
a ca, (3)

where Id is the d× d identity matrix. When components in ca are
independent conditioned on corresponding rows in Da, it can be
shown [27] that, with probability at least 1− δ,
∣

∣

∣
x
"
t,aθ̂θθa −E[rt,a|xt,a]

∣

∣

∣
≤ α

√

x"
t,a(D"

a Da + Id)−1xt,a (4)

for any δ > 0 and xt,a ∈ R
d, where α = 1 +

√

ln(2/δ)/2 is a
constant. In other words, the inequality above gives a reasonably
tight UCB for the expected payoff of arm a, from which a UCB-
type arm-selection strategy can be derived: at each trial t, choose

at
def
= arg max

a∈At

(

x
"
t,aθ̂θθa + α

√

x"
t,aA

−1
a xt,a

)

, (5)

where Aa
def
=D"

a Da + Id.
The confidence interval in Eq. (4) may be motivated and derived

from other principles. For instance, ridge regression can also be
interpreted as a Bayesian point estimate, where the posterior dis-
tribution of the coefficient vector, denoted as p(θθθa), is Gaussian
with mean θ̂θθa and covariance A−1

a . Given the current model, the
predictive variance of the expected payoff x"

t,aθθθ
∗
a is evaluated as

x"
t,aA

−1
a xt,a, and then

√

x"
t,aA

−1
a xt,a becomes the standard de-

viation. Furthermore, in information theory [19], the differential
entropy of p(θθθa) is defined as − 1

2 ln((2π)d detAa). The entropy
of p(θθθa) when updated by the inclusion of the new point xt,a then
becomes − 1

2 ln((2π)d det (Aa + xt,ax
"
t,a)). The entropy reduc-

tion in the model posterior is 1
2 ln(1 + x"

t,aA
−1
a xt,a). This quan-

tity is often used to evaluate model improvement contributed from
xt,a. Therefore, the criterion for arm selection in Eq. (5) can also
be regarded as an additive trade-off between the payoff estimate
and model uncertainty reduction.

Algorithm 1 gives a detailed description of the entire LinUCB
algorithm, whose only input parameter is α. Note the value of α
given in Eq. (4) may be conservatively large in some applications,
and so optimizing this parameter may result in higher total payoffs
in practice. Like all UCB methods, LinUCB always chooses the
arm with highest UCB (as in Eq. (5)).

This algorithm has a few nice properties. First, its computational
complexity is linear in the number of arms and at most cubic in
the number of features. To decrease computation further, we may
update Aat in every step (which takes O(d2) time), but compute
and cache Qa

def
=A−1

a (for all a) periodically instead of in real-
time. Second, the algorithm works well for a dynamic arm set,
and remains efficient as long as the size of At is not too large. This
case is true in many applications. In news article recommendation,
for instance, editors add/remove articles to/from a pool and the pool
size remains essentially constant. Third, although it is not the focus
of the present paper, we can adapt the analysis from [6] to show the
following: if the arm set At is fixed and contains K arms, then the
confidence interval (i.e., the right-hand side of Eq. (4)) decreases
fast enough with more and more data, and then prove the strong
regret bound of Õ(

√
KdT), matching the state-of-the-art result [6]

for bandits satisfying Eq. (2). These theoretical results indicate
fundamental soundness and efficiency of the algorithm.

Algorithm 1 LinUCB with disjoint linear models.
0: Inputs: α ∈ R+

1: for t = 1, 2, 3, . . . , T do
2: Observe features of all arms a ∈ At: xt,a ∈ R

d

3: for all a ∈ At do
4: if a is new then
5: Aa ← Id (d-dimensional identity matrix)
6: ba ← 0d×1 (d-dimensional zero vector)
7: end if
8: θ̂θθa ← A−1

a ba

9: pt,a ← θ̂θθ
"
a xt,a + α

√

x"
t,aA

−1
a xt,a

10: end for
11: Choose arm at = argmaxa∈At pt,a with ties broken arbi-

trarily, and observe a real-valued payoff rt
12: Aat ← Aat + xt,atx

"
t,at

13: bat ← bat + rtxt,at

14: end for

Finally, we note that, under the assumption that input features
xt,a were drawn i.i.d. from a normal distribution (in addition to the
modeling assumption in Eq. (2)), Pavlidis et al. [22] came up with
a similar algorithm that uses a least-squares solution θ̃θθa instead of
our ridge-regression solution (θ̂θθa in Eq. (3)) to compute the UCB.
However, our approach (and theoretical analysis) is more general
and remains valid even when input features are nonstationary. More
importantly, we will discuss in the next section how to extend the
basic Algorithm 1 to a much more interesting case not covered by
Pavlidis et al.

3.2 LinUCB with Hybrid Linear Models
Algorithm 1 (or the similar algorithm in [22]) computes the in-

verse of the matrix, D"
a Da + Id (or D"

a Da), where Da is again
the design matrix with rows corresponding to features in the train-
ing data. These matrices of all arms have fixed dimension d × d,
and can be updated efficiently and incrementally. Moreover, their
inverses can be computed easily as the parameters in Algorithm 1
are disjoint: the solution θ̂θθa in Eq. (3) is not affected by training
data of other arms, and so can be computed separately. We now
consider the more interesting case with hybrid models.

In many applications including ours, it is helpful to use features
that are shared by all arms, in addition to the arm-specific ones. For
example, in news article recommendation, a user may prefer only
articles about politics for which this provides a mechanism. Hence,
it is helpful to have features that have both shared and non-shared
components. Formally, we adopt the following hybrid model by
adding another linear term to the right-hand side of Eq. (2):

E[rt,a|xt,a] = z
"
t,aβββ

∗ + x
"
t,aθθθ

∗
a, (6)

where zt,a ∈ R
k is the feature of the current user/article combina-

tion, and βββ∗ is an unknown coefficient vector common to all arms.
This model is hybrid in the sense that some of the coefficients βββ∗

are shared by all arms, while others θθθ∗a are not.
For hybrid models, we can no longer use Algorithm 1 as the

confidence intervals of various arms are not independent due to the
shared features. Fortunately, there is an efficient way to compute
an UCB along the same line of reasoning as in the previous sec-
tion. The derivation relies heavily on block matrix inversion tech-
niques. Due to space limitation, we only give the pseudocode in
Algorithm 2 (where lines 5 and 12 compute the ridge-regression
solution of the coefficients, and line 13 computes the confidence
interval), and leave detailed derivations to a full paper. Here, we

Algorithm 2 LinUCB with hybrid linear models.
0: Inputs: α ∈ R+

1: A0 ← Ik (k-dimensional identity matrix)
2: b0 ← 0k (k-dimensional zero vector)
3: for t = 1, 2, 3, . . . , T do
4: Observe features of all arms a ∈ At: (zt,a,xt,a) ∈ R

k+d

5: β̂ββ ← A−1
0 b0

6: for all a ∈ At do
7: if a is new then
8: Aa ← Id (d-dimensional identity matrix)
9: Ba ← 0d×k (d-by-k zero matrix)

10: ba ← 0d×1 (d-dimensional zero vector)
11: end if
12: θ̂θθa ← A−1

a

(

ba −Baβ̂ββ
)

13: st,a ← z"t,aA
−1
0 zt,a − 2z"t,aA

−1
0 B"

a A
−1
a xt,a +

x"
t,aA

−1
a xt,a + x"

t,aA
−1
a BaA

−1
0 B"

a A
−1
a xt,a

14: pt,a ← z"t,aβ̂ββ + x"
t,aθ̂θθa + α

√
st,a

15: end for
16: Choose arm at = argmaxa∈At pt,a with ties broken arbi-

trarily, and observe a real-valued payoff rt
17: A0 ← A0 +B"

at
A−1

at
Bat

18: b0 ← b0 +B"
at
A−1

at
bat

19: Aat ← Aat + xt,atx
"
t,at

20: Bat ← Bat + xt,atz
"
t,at

21: bat ← bat + rtxt,at

22: A0 ← A0 + zt,atz
"
t,at

−B"
at
A−1

at
Bat

23: b0 ← b0 + rtzt,at −B"
at
A−1

at
bat

24: end for

only point out the important fact that the algorithm is computation-
ally efficient since the building blocks in the algorithm (A0, b0,
Aa, Ba, and ba) all have fixed dimensions and can be updated
incrementally. Furthermore, quantities associated with arms not
existing in At no longer get involved in the computation. Finally,
we can also compute and cache the inverses (A−1

0 and A−1
a) pe-

riodically instead of at the end of each trial to reduce the per-trial
computational complexity to O(d2 + k2).

4. EVALUATION METHODOLOGY
Compared to machine learning in the more standard supervised

setting, evaluation of methods in a contextual bandit setting is frus-
tratingly difficult. Our goal here is to measure the performance of a
bandit algorithm π, that is, a rule for selecting an arm at each time
step based on the preceding interactions (such as the algorithms de-
scribed above). Because of the interactive nature of the problem, it
would seem that the only way to do this is to actually run the algo-
rithm on “live” data. However, in practice, this approach is likely to
be infeasible due to the serious logistical challenges that it presents.
Rather, we may only have offline data available that was collected
at a previous time using an entirely different logging policy. Be-
cause payoffs are only observed for the arms chosen by the logging
policy, which are likely to often differ from those chosen by the
algorithm π being evaluated, it is not at all clear how to evaluate
π based only on such logged data. This evaluation problem may
be viewed as a special case of the so-called “off-policy evaluation
problem” in reinforcement learning (see, c.f., [23]).

One solution is to build a simulator to model the bandit process
from the logged data, and then evaluate π with the simulator. How-
ever, the modeling step will introduce bias in the simulator and so
make it hard to justify the reliability of this simulator-based evalu-

ation approach. In contrast, we propose an approach that is simple
to implement, grounded on logged data, and unbiased.

In this section, we describe a provably reliable technique for car-
rying out such an evaluation, assuming that the individual events
are i.i.d., and that the logging policy that was used to gather the
logged data chose each arm at each time step uniformly at random.
Although we omit the details, this latter assumption can be weak-
ened considerably so that any randomized logging policy is allowed
and our solution can be modified accordingly using rejection sam-
pling, but at the cost of decreased efficiency in using data.

More precisely, we suppose that there is some unknown dis-
tribution D from which tuples are drawn i.i.d. of the form
(x1, ...,xK , r1, . . . , rK), each consisting of observed feature vec-
tors and hidden payoffs for all arms. We also posit access to a large
sequence of logged events resulting from the interaction of the log-
ging policy with the world. Each such event consists of the context
vectors x1, ...,xK , a selected arm a and the resulting observed pay-
off ra. Crucially, only the payoff ra is observed for the single arm
a that was chosen uniformly at random. For simplicity of presenta-
tion, we take this sequence of logged events to be an infinitely long
stream; however, we also give explicit bounds on the actual finite
number of events required by our evaluation method.

Our goal is to use this data to evaluate a bandit algorithm π.
Formally, π is a (possibly randomized) mapping for selecting the
arm at at time t based on the history ht−1 of t−1 preceding events,
together with the current context vectors xt1, ...,xtK .

Our proposed policy evaluator is shown in Algorithm 3. The
method takes as input a policy π and a desired number of “good”
events T on which to base the evaluation. We then step through
the stream of logged events one by one. If, given the current his-
tory ht−1, it happens that the policy π chooses the same arm a as
the one that was selected by the logging policy, then the event is
retained, that is, added to the history, and the total payoff Rt up-
dated. Otherwise, if the policy π selects a different arm from the
one that was taken by the logging policy, then the event is entirely
ignored, and the algorithm proceeds to the next event without any
other change in its state.

Note that, because the logging policy chooses each arm uni-
formly at random, each event is retained by this algorithm with
probability exactly 1/K, independent of everything else. This
means that the events which are retained have the same distribution
as if they were selected by D. As a result, we can prove that two
processes are equivalent: the first is evaluating the policy against T
real-world events from D, and the second is evaluating the policy
using the policy evaluator on a stream of logged events.

THEOREM 1. For all distributionsD of contexts, all policies π,
all T , and all sequences of events hT ,

Pr
Policy_Evaluator(π,S)

(hT) = Pr
π,D

(hT)

where S is a stream of events drawn i.i.d. from a uniform random
logging policy andD. Furthermore, the expected number of events
obtained from the stream to gather a history hT of length T isKT .

This theorem says that every history hT has the identical prob-
ability in the real world as in the policy evaluator. Many statistics
of these histories, such as the average payoff RT /T returned by
Algorithm 3, are therefore unbiased estimates of the value of the
algorithm π. Further, the theorem states that KT logged events are
required, in expectation, to retain a sample of size T .

PROOF. The proof is by induction on t = 1, . . . , T starting with
a base case of the empty history which has probability 1when t = 0

Algorithm 3 Policy_Evaluator.
0: Inputs: T > 0; policy π; stream of events
1: h0 ← ∅ {An initially empty history}
2: R0 ← 0 {An initially zero total payoff}
3: for t = 1, 2, 3, . . . , T do
4: repeat
5: Get next event (x1, ...,xK , a, ra)
6: until π(ht−1, (x1, ..., xK)) = a
7: ht ← CONCATENATE(ht−1, (x1, ...,xK , a, ra))
8: Rt ← Rt−1 + ra
9: end for

10: Output: RT /T

under both methods of evaluation. In the inductive case, assume
that we have for all t− 1:

Pr
Policy_Evaluator(π,S)

(ht−1) = Pr
π,D

(ht−1)

and want to prove the same statement for any history ht. Since the
data is i.i.d. and any randomization in the policy is independent of
randomization in the world, we need only prove that conditioned
on the history ht−1 the distribution over the t-th event is the same
for each process. In other words, we must show:

Pr
Policy_Evaluator(π,S)

((xt,1, ...,xt,K , a, rt,a) | ht−1)

=Pr
D
(xt,1, ...,xt,K , rt,a) Pr

π(ht−1)
(a | xt,1, ...,xt,K).

Since the arm a is chosen uniformly at random in the logging pol-
icy, the probability that the policy evaluator exits the inner loop is
identical for any policy, any history, any features, and any arm, im-
plying this happens for the last event with the probability of the
last event, PrD(xt,1, ...,xt,K , rt,a). Similarly, since the policy π’s
distribution over arms is independent conditioned on the history
ht−1 and features (xt,1, ...,xt,K), the probability of arm a is just
Prπ(ht−1)(a|xt,1, ...,xt,K).

Finally, since each event from the stream is retained with proba-
bility exactly 1/K, the expected number required to retain T events
is exactly KT .

5. EXPERIMENTS
In this section, we verify the capacity of the proposed LinUCB

algorithm on a real-world application using the offline evaluation
method of Section 4. We start with an introduction of the problem
setting in Yahoo! Today-Module, and then describe the user/item
attributes we used in experiments. Finally, we define performance
metrics and report experimental results with comparison to a few
standard (contextual) bandit algorithms.

5.1 Yahoo! Today Module
The Today Module is the most prominent panel on the Yahoo!

Front Page, which is also one of the most visited pages on the In-
ternet; see a snapshot in Figure 1. The default “Featured” tab in the
Today Module highlights one of four high-quality articles, mainly
news, while the four articles are selected from an hourly-refreshed
article pool curated by human editors. As illustrated in Figure 1,
there are four articles at footer positions, indexed by F1–F4. Each
article is represented by a small picture and a title. One of the four
articles is highlighted at the story position, which is featured by a
large picture, a title and a short summary along with related links.
By default, the article at F1 is highlighted at the story position. A

Figure 1: A snapshot of the “Featured” tab in the Today Mod-
ule on Yahoo! Front Page. By default, the article at F1 position
is highlighted at the story position.

user can click on the highlighted article at the story position to read
more details if she is interested in the article. The event is recorded
as a story click. To draw visitors’ attention, we would like to rank
available articles according to individual interests, and highlight the
most attractive article for each visitor at the story position.

5.2 Experiment Setup
This subsection gives a detailed description of our experimental

setup, including data collection, feature construction, performance
evaluation, and competing algorithms.

5.2.1 Data Collection
We collected events from a random bucket in May 2009. Users

were randomly selected to the bucket with a certain probability per
visiting view.3 In this bucket, articles were randomly selected from
the article pool to serve users. To avoid exposure bias at footer
positions, we only focused on users’ interactions with F1 articles
at the story position. Each user interaction event consists of three
components: (i) the random article chosen to serve the user, (ii)
user/article information, and (iii) whether the user clicks on the ar-
ticle at the story position. Section 4 shows these random events can
be used to reliably evaluate a bandit algorithm’s expected payoff.

There were about 4.7 million events in the random bucket on
May 01. We used this day’s events (called “tuning data”) for model
validation to decide the optimal parameter for each competing ban-
dit algorithm. Then we ran these algorithms with tuned parameters
on a one-week event set (called “evaluation data”) in the random
bucket from May 03–09, which contained about 36 million events.

5.2.2 Feature Construction
We now describe the user/article features constructed for our ex-

periments. Two sets of features for the disjoint and hybrid models,
respectively, were used to test the two forms of LinUCB in Sec-
tion 3 and to verify our conjecture that hybrid models can improve
learning speed.

We start with raw user features that were selected by “support”.
The support of a feature is the fraction of users having that feature.
To reduce noise in the data, we only selected features with high
support. Specifically, we used a feature when its support is at least
0.1. Then, each user was originally represented by a raw feature
vector of over 1000 categorical components, which include: (i) de-
mographic information: gender (2 classes) and age discretized into
10 segments; (ii) geographic features: about 200 metropolitan lo-
cations worldwide and U.S. states; and (iii) behavioral categories:
3We call it view-based randomization. After refreshing her
browser, the user may not fall into the random bucket again.

about 1000 binary categories that summarize the user’s consump-
tion history within Yahoo! properties. Other than these features, no
other information was used to identify a user.

Similarly, each article was represented by a raw feature vector of
about 100 categorical features constructed in the same way. These
features include: (i) URL categories: tens of classes inferred from
the URL of the article resource; and (ii) editor categories: tens of
topics tagged by human editors to summarize the article content.

We followed a previous procedure [12] to encode categorical
user/article features as binary vectors and then normalize each fea-
ture vector to unit length. We also augmented each feature vector
with a constant feature of value 1. Now each article and user was
represented by a feature vector of 83 and 1193 entries, respectively.

To further reduce dimensionality and capture nonlinearity in
these raw features, we carried out conjoint analysis based on ran-
dom exploration data collected in September 2008. Following a
previous approach to dimensionality reduction [13], we projected
user features onto article categories and then clustered users with
similar preferences into groups. More specifically:

• We first used logistic regression (LR) to fit a bilinear model
for click probability given raw user/article features so that
φφφ"

uWφφφa approximated the probability that the user u clicks
on article a, whereφφφu andφφφa were the corresponding feature
vectors, and W was a weight matrix optimized by LR.

• Raw user features were then projected onto an induced space
by computing ψψψu

def
=φφφ"

uW. Here, the ith component in ψψψu

for user u may be interpreted as the degree to which the user
likes the ith category of articles. K-means was applied to
group users in the induced ψψψu space into 5 clusters.

• The final user feature was a six-vector: five entries corre-
sponded to membership of that user in these 5 clusters (com-
puted with a Gaussian kernel and then normalized so that
they sum up to unity), and the sixth was a constant feature 1.

At trial t, each article a has a separate six-dimensional feature xt,a

that is exactly the six-dimensional feature constructed as above for
user ut. Since these article features do not overlap, they are for
disjoint linear models defined in Section 3.

For each article a, we performed the same dimensionality reduc-
tion to obtain a six-dimensional article feature (including a constant
1 feature). Its outer product with a user feature gave 6 × 6 = 36
features, denoted zt,a ∈ R

36, that corresponded to the shared fea-
tures in Eq. (6), and thus (zt,a,xt,a) could be used in the hybrid
linear model. Note the features zt,a contains user-article interac-
tion information, while xt,a contains user information only.

Here, we intentionally used five users (and articles) groups,
which has been shown to be representative in segmentation anal-
ysis [13]. Another reason for using a relatively small feature space
is that, in online services, storing and retrieving large amounts of
user/article information will be too expensive to be practical.

5.3 Compared Algorithms
The algorithms empirically evaluated in our experiments can be

categorized into three groups:
I. Algorithms that make no use of features. These correspond to
the context-free K-armed bandit algorithms that ignore all contexts
(i.e., user/article information).

• random: A random policy always chooses one of the candi-
date articles from the pool with equal probability. This algo-
rithm requires no parameters and does not “learn” over time.

• ε-greedy: As described in Section 2.2, it estimates each arti-
cle’s CTR; then it chooses a random article with probability
ε, and chooses the article of the highest CTR estimate with
probability 1− ε. The only parameter of this policy is ε.

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

ct
r

ε

ε-greedy
ε-greedy (warm)
ε-greedy (seg)

ε-greedy (disjoint)
ε-greedy (hybrid)

omniscient

(a) Deployment bucket.

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

ct
r

α

ucb
ucb (warm)

ucb (seg)
linucb (disjoint)
linucb (hybrid)

omniscient

(b) Deployment bucket.

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

ct
r

ε

ε-greedy
ε-greedy (warm)
ε-greedy (seg)

ε-greedy (disjoint)
ε-greedy (hybrid)

omniscient

(c) Learning bucket.

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4
ct

r
α

ucb
ucb (warm)

ucb (seg)
linucb (simple)
linucb (hybrid)

omniscient

(d) Learning bucket.

Figure 2: Parameter tuning: CTRs of various algorithms on the one-day tuning dataset.

• ucb: As described in Section 2.2, this policy estimates each
article’s CTR as well as a confidence interval of the estimate,
and always chooses the article with the highest UCB. Specifi-
cally, following UCB1 [7], we computed an article a’s confi-
dence interval by ct,a = α√

nt,a
, where nt,a is the number of

times a was chosen prior to trial t, and α > 0 is a parameter.
• omniscient: Such a policy achieves the best empirical

context-free CTR from hindsight. It first computes each ar-
ticle’s empirical CTR from logged events, and then always
chooses the article with highest empircal CTR when it is
evaluated using the same logged events. This algorithm re-
quires no parameters and does not “learn” over time.

II. Algorithms with “warm start”—an intermediate step towards
personalized services. The idea is to provide an offline-estimated
user-specific adjustment on articles’ context-free CTRs over the
whole traffic. The offset serves as an initialization on CTR estimate
for new content, a.k.a.“warm start”. We re-trained the bilinear lo-
gistic regression model studied in [12] on Sept 2008 random traffic
data, using features zt,a constructed above. The selection criterion
then becomes the sum of the context-free CTR estimate and a bi-
linear term for a user-specific CTR adjustment. In training, CTR
was estimated using the context-free ε-greedy with ε = 1.

• ε-greedy (warm): This algorithm is the same as ε-greedy
except it adds the user-specific CTR correction to the article’s
context-free CTR estimate.

• ucb (warm): This algorithm is the same as the previous one
but replaces ε-greedy with ucb.

III. Algorithms that learn user-specific CTRs online.
• ε-greedy (seg): Each user is assigned to the closest user

cluster among the five constructed in Section 5.2.2, and so all
users are partitioned into five groups (a.k.a. user segments),
in each of which a separate copy of ε-greedy was run.

• ucb (seg): This algorithm is similar to ε-greedy (seg) ex-
cept it ran a copy of ucb in each of the five user segments.

• ε-greedy (disjoint): This is ε-greedy with disjoint models,
and may be viewed as a close variant of epoch-greedy [18].

• linucb (disjoint): This is Algorithm 1 with disjoint models.
• ε-greedy (hybrid): This is ε-greedy with hybrid models,

and may be viewed as a close variant of epoch-greedy.
• linucb (hybrid): This is Algorithm 2 with hybrid models.

5.4 Performance Metric
An algorithm’s CTR is defined as the ratio of the number of

clicks it receives and the number of steps it is run. We used all
algorithms’ CTRs on the random logged events for performance
comparison. To protect business-sensitive information, we report
an algorithm’s relative CTR, which is the algorithm’s CTR divided
by the random policy’s. Therefore, we will not report a random pol-
icy’s relative CTR as it is always 1 by definition. For convenience,
we will use the term “CTR” from now on instead of “relative CTR”.

For each algorithm, we are interested in two CTRs motivated
by our application, which may be useful for other similar applica-
tions. When deploying the methods to Yahoo!’s front page, one
reasonable way is to randomly split all traffic to this page into two
buckets [3]. The first, called “learning bucket”, usually consists of
a small fraction of traffic on which various bandit algorithms are
run to learn/estimate article CTRs. The other, called “deployment
bucket”, is where Yahoo! Front Page greedily serves users using
CTR estimates obained from the learning bucket. Note that “learn-
ing” and “deployment” are interleaved in this problem, and so in
every view falling into the deployment bucket, the article with the
highest current (user-specific) CTR estimate is chosen; this esti-
mate may change later if the learning bucket gets more data. CTRs
in both buckets were estimated with Algorithm 3.

algorithm size = 100% size = 30% size = 20% size = 10% size = 5% size = 1%
deploy learn deploy learn deploy learn deploy learn deploy learn deploy learn

ε-greedy 1.596 1.326 1.541 1.326 1.549 1.273 1.465 1.326 1.409 1.292 1.234 1.139
0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

ucb 1.594 1.569 1.582 1.535 1.569 1.488 1.541 1.446 1.541 1.465 1.354 1.22
0% 18.3% 2.7% 15.8% 1.3% 16.9% 5.2% 9% 9.4% 13.4% 9.7% 7.1%

ε-greedy (seg) 1.742 1.446 1.652 1.46 1.585 1.119 1.474 1.284 1.407 1.281 1.245 1.072
9.1% 9% 7.2% 10.1% 2.3% −12% 0.6% −3.1% 0% −0.8% 0.9% −5.8%

ucb (seg) 1.781 1.677 1.742 1.555 1.689 1.446 1.636 1.529 1.532 1.32 1.398 1.25
11.6% 26.5% 13% 17.3% 9% 13.6% 11.7% 15.3% 8.7% 2.2% 13.3% 9.7%

ε-greedy (disjoint) 1.769 1.309 1.686 1.337 1.624 1.529 1.529 1.451 1.432 1.345 1.262 1.183
10.8% −1.2% 9.4% 0.8% 4.8% 20.1% 4.4% 9.4% 1.6% 4.1% 2.3% 3.9%

linucb (disjoint) 1.795 1.647 1.719 1.507 1.714 1.384 1.655 1.387 1.574 1.245 1.382 1.197
12.5% 24.2% 11.6% 13.7% 10.7% 8.7% 13% 4.6% 11.7% −3.5% 12% 5.1%

ε-greedy (hybrid) 1.739 1.521 1.68 1.345 1.636 1.449 1.58 1.348 1.465 1.415 1.342 1.2
9% 14.7% 9% 1.4% 5.6% 13.8% 7.8% 1.7% 4% 9.5% 8.8% 5.4%

linucb (hybrid) 1.73 1.663 1.691 1.591 1.708 1.619 1.675 1.535 1.588 1.507 1.482 1.446
8.4% 25.4% 9.7% 20% 10.3% 27.2% 14.3% 15.8% 12.7% 16.6% 20.1% 27%

Table 1: Performance evaluation: CTRs of all algorithms on the one-week evaluation dataset in the deployment and learning buckets
(denoted by “deploy” and “learn” in the table, respectively). The numbers with a percentage is the CTR lift compared to ε-greedy.

Since the deployment bucket is often larger than the learning
bucket, CTR in the deployment bucket is more important. How-
ever, a higher CTR in the learning bucket suggests a faster learning
rate (or equivalently, smaller regret) for a bandit algorithm. There-
fore, we chose to report algorithm CTRs in both buckets.

5.5 Experimental Results
5.5.1 Results for Tuning Data

Each of the competing algorithms (except random and omni-
scient) in Section 5.3 requires a single parameter: ε for ε-greedy
algorithms and α for UCB ones. We used tuning data to optimize
these parameters. Figure 2 shows how the CTR of each algorithm
changes with respective parameters. All results were obtained by
a single run, but given the size of our dataset and the unbiasedness
result in Theorem 1, the reported numbers are statistically reliable.

First, as seen from Figure 2, the CTR curves in the learning buck-
ets often possess the inverted U-shape. When the parameter (ε or
α) is too small, there was insufficient exploration, the algorithms
failed to identify good articles, and had a smaller number of clicks.
On the other hand, when the parameter is too large, the algorithms
appeared to over-explore and thus wasted some of the opportunities
to increase the number of clicks. Based on these plots on tuning
data, we chose appropriate parameters for each algorithm and ran
it once on the evaluation data in the next subsection.

Second, it can be concluded from the plots that warm-start in-
formation is indeed helpful for finding a better match between user
interest and article content, compared to the no-feature versions of
ε-greedy and UCB. Specifically, both ε-greedy (warm) and ucb
(warm) were able to beat omniscient, the highest CTRs achiev-
able by context-free policies in hindsight. However, performance
of the two algorithms using warm-start information is not as stable
as algorithms that learn the weights online. Since the offline model
for “warm start” was trained with article CTRs estimated on all ran-
dom traffic [12], ε-greedy (warm) gets more stable performance
in the deployment bucket when ε is close to 1. The warm start part
also helps ucb (warm) in the learning bucket by selecting more at-
tractive articles to users from scratch, but did not help ucb (warm)
in determining the best online for deployment. Since ucb relies
on the a confidence interval for exploration, it is hard to correct
the initialization bias introduced by “warm start”. In contrast, all
online-learning algorithms were able to consistently beat the omni-
scient policy. Therefore, we did not try the warm-start algorithms
on the evaluation data.

Third, ε-greedy algorithms (on the left of Figure 2) achieved sim-
ilar CTR as upper confidence bound ones (on the right of Figure 2)
in the deployment bucket when appropriate parameters were used.
Thus, both types of algorithms appeared to learn comparable poli-
cies. However, they seemed to have lower CTR in the learning
bucket, which is consistent with the empirical findings of context-
free algorithms [2] in real bucket tests.

Finally, to compare algorithms when data are sparse, we repeated
the same parameter tuning process for each algorithm with fewer
data, at the level of 30%, 20%, 10%, 5%, and 1%. Note that we
still used all data to evaluate an algorithm’s CTR as done in Algo-
rithm 3, but then only a fraction of available data were randomly
chosen to be used by the algorithm to improve its policy.

5.5.2 Results for Evaluation Data
With parameters optimized on the tuning data (c.f., Figure 2), we

ran the algorithms on the evaluation data and summarized the CTRs
in Table 1. The table also reports the CTR lift compared to the
baseline of ε-greedy. The CTR of omniscient was 1.615, and so
a significantly larger CTR of an algorithm indicates its effective use
of user/article features for personalization. Recall that the reported
CTRs were normalized by the random policy’s CTR. We examine
the results more closely in the following subsections.

On the Use of Features.
We first investigate whether it helps to use features in article rec-

ommendation. It is clear from Table 1 that, by considering user
features, both ε-greedy (seg/disjoint/hybrid) and UCB methods
(ucb (seg) and linucb (disjoint/hybrid)) were able to achieve a
CTR lift of around 10%, compared to the baseline ε-greedy.

To better visualize the effect of features, Figure 3 shows how an
article’s CTR (when chosen by an algorithm) was lifted compared
to its base CTR (namely, the context-free CTR).4 Here, an article’s
base CTR measures how interesting it is to a random user, and was
estimated from logged events. Therefore, a high ratio of the lifted
and base CTRs of an article is a strong indicator that an algorithm
does recommend this article to potentially interested users. Fig-
ure 3(a) shows neither ε-greedy nor ucb was able to lift article
CTRs, since they made no use of user information. In contrast, all

4To avoid inaccurate CTR estimates, only 50 articles that were
chosen most often by an algorithm were included in its own plots.
Hence, the plots for different algorithms are not comparable.

 0

 1

 2

 3

 0 1 2 3

lif
te

d
ct

r

base ctr
(a) ε-greedy and ucb

 0

 1

 2

 3

 0 1 2 3
lif

te
d

ct
r

base ctr
(b) seg:ε-greedy and ucb

 0

 1

 2

 3

 0 1 2 3

lif
te

d
ct

r

base ctr
(c) disjoint:ε-greedy and linucb

 0

 1

 2

 3

 0 1 2 3

lif
te

d
ct

r

base ctr
(d) hybrid:ε-greedy and linucb

Figure 3: Scatterplots of the base CTR vs. lifted CTR (in the learning bucket) of the 50most frequently selected articles when 100%
evaluation data were used. Red crosses are for ε-greedy algorithms, and blue circles are for UCB algorithms. Note that the sets of
most frequently chosen articles varied with algorithms; see the text for details.

the other three plots show clear benefits by considering personal-
ized recommendation. In an extreme case (Figure 3(c)), one of the
article’s CTR was lifted from 1.31 to 3.03—a 132% improvement.

Furthermore, it is consistent with our previous results on tuning
data that, compared to ε-greedy algorithms, UCB methods achieved
higher CTRs in the deployment bucket, and the advantage was even
greater in the learning bucket. As mentioned in Section 2.2, ε-
greedy approaches are unguided because they choose articles uni-
formly at random for exploration. In contrast, exploration in upper
confidence bound methods are effectively guided by confidence
intervals—a measure of uncertainty in an algorithm’s CTR esti-
mate. Our experimental results imply the effectiveness of upper
confidence bound methods and we believe they have similar bene-
fits in many other applications as well.

On the Size of Data.
One of the challenges in personalized web services is the scale

of the applications. In our problem, for example, a small pool of
news articles were hand-picked by human editors. But if we wish
to allow more choices or use automated article selection methods
to determine the article pool, the number of articles can be too large
even for the high volume of Yahoo! traffic. Therefore, it becomes
critical for an algorithm to quickly identify a good match between
user interests and article contents when data are sparse. In our ex-
periments, we artificially reduced data size (to the levels of 30%,
20%, 10%, 5%, and 1%, respectively) to mimic the situation where
we have a large article pool but a fixed volume of traffic.

To better visualize the comparison results, we use bar graphs in
Figure 4 to plot all algorithms’ CTRs with various data sparsity
levels. A few observations are in order. First, at all data sparsity
levels, features were still useful. At the level of 1%, for instance,
we observed a 10.3% improvement of linucb (hybrid)’s CTR in the
deployment bucket (1.493) over ucb’s (1.354).

Second, UCB methods consistently outperformed ε-greedy ones
in the deployment bucket.5 The advantage over ε-greedy was even
more apparent when data size was smaller.

Third, compared to ucb (seg) and linucb (disjoint), linucb (hy-
brid) showed significant benefits when data size was small. Re-
call that in hybrid models, some features are shared by all articles,
making it possible for CTR information of one article to be “trans-
ferred” to others. This advantage is particularly useful when the
article pool is large. In contrast, in disjoint models, feedback of

5In the less important learning bucket, there were two exceptions
for linucb (disjoint).

one article may not be utilized by other articles; the same is true for
ucb (seg). Figure 4(a) shows transfer learning is indeed helpful
when data are sparse.

Comparing ucb (seg) and linucb (disjoint).
From Figure 4(a), it can be seen that ucb (seg) and linucb (dis-

joint) had similar performance. We believe it was no coincidence.
Recall that features in our disjoint model are actually normalized
membership measures of a user in the five clusters described in
Section 5.2.2. Hence, these features may be viewed as a “soft”
version of the user assignment process adopted by ucb (seg).

Figure 5 plots the histogram of a user’s relative membership
measure to the closest cluster, namely, the largest component of the
user’s five, non-constant features. It is clear that most users were
quite close to one of the five cluster centers: the maximum mem-
bership of about 85% users were higher than 0.5, and about 40% of
them were higher than 0.8. Therefore, many of these features have
a highly dominating component, making the feature vector similar
to the “hard” version of user group assignment.

We believe that adding more features with diverse components,
such as those found by principal component analysis, would be nec-
essary to further distinguish linucb (disjoint) from ucb (seg).

6. CONCLUSIONS
This paper takes a contextual-bandit approach to personalized

web-based services such as news article recommendation. We pro-
posed a simple and reliable method for evaluating bandit algo-
rithms directly from logged events, so that the often problematic
simulator-building step could be avoided. Based on real Yahoo!
Front Page traffic, we found that upper confidence bound methods
generally outperform the simpler yet unguided ε-greedy methods.
Furthermore, our new algorithm LinUCB shows advantages when
data are sparse, suggesting its effectiveness to personalized web
services when the number of contents in the pool is large.

In the future, we plan to investigate bandit approaches to other
similar web-based serviced such as online advertising, and com-
pare our algorithms to related methods such as Banditron [16]. A
second direction is to extend the bandit formulation and algorithms
in which an “arm” may refer to a complex object rather than an
item (like an article). An example is ranking, where an arm corre-
sponds to a permutation of retrieved webpages. Finally, user inter-
ests change over time, and so it is interesting to consider temporal
information in bandit algorithms.

 1

 1.2

 1.4

 1.6

 1.8

100% 30% 20% 10% 5% 1%

ct
r

data size

ε-greedy
ucb

ε-greedy (seg)
ucb (seg)

ε-greedy (disjoint)

linucb (disjoint)
ε-greedy (hybrid)

linucb (hybrid)
omniscient

(a) CTRs in the deployment bucket.

 1

 1.2

 1.4

 1.6

 1.8

100% 30% 20% 10% 5% 1%

ct
r

data size
(b) CTRs in the learning bucket.

Figure 4: CTRs in evaluation data with varying data sizes.

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
maximum user membership feature

Figure 5: User maximum membership histogram.

7. ACKNOWLEDGMENTS
We thank Deepak Agarwal, Bee-Chung Chen, Daniel Hsu, and

Kishore Papineni for many helpful discussions, István Szita and
Tom Walsh for clarifying their algorithm, and Taylor Xi and the
anonymous reviewers for suggestions that improved the presenta-
tion of the paper.

8. REFERENCES
[1] N. Abe, A. W. Biermann, and P. M. Long. Reinforcement learning

with immediate rewards and linear hypotheses. Algorithmica,
37(4):263–293, 2003.

[2] D. Agarwal, B.-C. Chen, and P. Elango. Explore/exploit schemes for
web content optimization. In Proc. of the 9th International Conf. on
Data Mining, 2009.

[3] D. Agarwal, B.-C. Chen, P. Elango, N. Motgi, S.-T. Park,
R. Ramakrishnan, S. Roy, and J. Zachariah. Online models for
content optimization. In Advances in Neural Information Processing
Systems 21, pages 17–24, 2009.

[4] R. Agrawal. Sample mean based index policies with o(log n) regret
for the multi-armed bandit problem. Advances in Applied
Probability, 27(4):1054–1078, 1995.

[5] A. Anagnostopoulos, A. Z. Broder, E. Gabrilovich, V. Josifovski, and
L. Riedel. Just-in-time contextual advertising. In Proc. of the 16th

ACM Conf. on Information and Knowledge Management, pages
331–340, 2007.

[6] P. Auer. Using confidence bounds for exploitation-exploration
trade-offs. Journal of Machine Learning Research, 3:397–422, 2002.

[7] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine Learning, 47(2–3):235–256,
2002.

[8] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The
nonstochastic multiarmed bandit problem. SIAM Journal on
Computing, 32(1):48–77, 2002.

[9] D. A. Berry and B. Fristedt. Bandit Problems: Sequential Allocation
of Experiments. Monographs on Statistics and Applied Probability.
Chapman and Hall, 1985.

[10] P. Brusilovsky, A. Kobsa, and W. Nejdl, editors. The Adaptive Web —
Methods and Strategies of Web Personalization, volume 4321 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2007.

[11] R. Burke. Hybrid systems for personalized recommendations. In
B. Mobasher and S. S. Anand, editors, Intelligent Techniques for Web
Personalization. Springer-Verlag, 2005.

[12] W. Chu and S.-T. Park. Personalized recommendation on dynamic
content using predictive bilinear models. In Proc. of the 18th
International Conf. on World Wide Web, pages 691–700, 2009.

[13] W. Chu, S.-T. Park, T. Beaupre, N. Motgi, A. Phadke,
S. Chakraborty, and J. Zachariah. A case study of behavior-driven
conjoint analysis on Yahoo!: Front Page Today Module. In Proc. of
the 15th ACM SIGKDD International Conf. on Knowledge Discovery
and Data Mining, pages 1097–1104, 2009.

[14] A. Das, M. Datar, A. Garg, and S. Rajaram. Google news
personalization: scalable online collaborative filtering. In Proc. of the
16th International World Wide Web Conf., 2007.

[15] J. Gittins. Bandit processes and dynamic allocation indices. Journal
of the Royal Statistical Society. Series B (Methodological),
41:148–177, 1979.

[16] S. M. Kakade, S. Shalev-Shwartz, and A. Tewari. Efficient bandit
algorithms for online multiclass prediction. In Proc. of the 25th
International Conf. on Machine Learning, pages 440–447, 2008.

[17] T. L. Lai and H. Robbins. Asymptotically efficient adaptive
allocation rules. Advances in Applied Mathematics, 6(1):4–22, 1985.

[18] J. Langford and T. Zhang. The epoch-greedy algorithm for contextual
multi-armed bandits. In Advances in Neural Information Processing
Systems 20, 2008.

[19] D. J. C. MacKay. Information Theory, Inference, and Learning
Algorithms. Cambridge University Press, 2003.

[20] D. Mladenic. Text-learning and related intelligent agents: A survey.
IEEE Intelligent Agents, pages 44–54, 1999.

[21] S.-T. Park, D. Pennock, O. Madani, N. Good, and D. DeCoste. Naïve
filterbots for robust cold-start recommendations. In Proc. of the 12th
ACM SIGKDD International Conf. on Knowledge Discovery and
Data Mining, pages 699–705, 2006.

[22] N. G. Pavlidis, D. K. Tasoulis, and D. J. Hand. Simulation studies of
multi-armed bandits with covariates. In Proceedings on the 10th
International Conf. on Computer Modeling and Simulation, pages
493–498, 2008.

[23] D. Precup, R. S. Sutton, and S. P. Singh. Eligibility traces for
off-policy policy evaluation. In Proc. of the 17th Interational Conf.
on Machine Learning, pages 759–766, 2000.

[24] H. Robbins. Some aspects of the sequential design of experiments.
Bulletin of the American Mathematical Society, 58(5):527–535,
1952.

[25] J. B. Schafer, J. Konstan, and J. Riedi. Recommender systems in
e-commerce. In Proc. of the 1st ACM Conf. on Electronic Commerce,
1999.

[26] W. R. Thompson. On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples. Biometrika,
25(3–4):285–294, 1933.

[27] T. J. Walsh, I. Szita, C. Diuk, and M. L. Littman. Exploring compact
reinforcement-learning representations with linear regression. In
Proc. of the 25th Conf. on Uncertainty in Artificial Intelligence, 2009.

	1 Introduction
	2 Formulation & Related Work
	2.1 A Multi-armed Bandit Formulation
	2.2 Existing Bandit Algorithms

	3 Algorithm
	3.1 LinUCB with Disjoint Linear Models
	3.2 LinUCB with Hybrid Linear Models

	4 Evaluation Methodology
	5 Experiments
	5.1 Yahoo! Today Module
	5.2 Experiment Setup
	5.2.1 Data Collection
	5.2.2 Feature Construction

	5.3 Compared Algorithms
	5.4 Performance Metric
	5.5 Experimental Results
	5.5.1 Results for Tuning Data
	5.5.2 Results for Evaluation Data

	6 Conclusions
	7 Acknowledgments
	8 References

