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Abstract. In cooperative multi-agent systems, group performance often
depends more on the interactions between team members, rather than
on the performance of any individual agent. Hence, coordination among
agents is essential to optimize the group strategy. One solution which is
common in the literature is to let the agents learn in a joint action space.
Joint Action Learning (JAL) enables agents to explicitly take into ac-
count the actions of other agents, but has the significant drawback that
the action space in which the agents must learn scales exponentially in
the number of agents. Local coordination is a way for a team to coordi-
nate while keeping communication and computational complexity low. It
allows the exploitation of a specific dependency structure underlying the
problem, such as tight couplings between specific agents. In this paper we
investigate a novel approach to local coordination, in which agents learn
this dependency structure, resulting in coordination which is beneficial
to the group performance. We evaluate our approach in the context of
online distributed constraint optimization problems.

1 Introduction

A key issue in multi-agent learning is ensuring that agents coordinate
their individual decisions in order to reach a jointly optimal payoff. A
common approach is to let the agents learn in the joint action space. Joint
Action Learning (JAL) enables agents to explicitly take into account the
actions of other agents, but has the significant drawback that the action
space in which the agents must learn scales exponentially in the number
of agents [5], quickly becoming computationally unmanageable. In this
paper, we investigate a novel approach in which agents adaptively deter-
mine when coordination is beneficial. We introduce Local Joint Action
Learners (LJAL) which specifically learn to coordinate their action se-
lection only when necessary, in order to improve the global payoff, and
evaluate our approach in the context of distributed constraint optimiza-
tion. We investigate teamwork among a group of agents attempting to
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optimize a set of constraints in an online fashion. Agents learn how to
coordinate their actions using only a global reward signal resulting from
the actions of the entire group of agents.
The remainder of this paper is laid out as follows: in the next section we
review some background material and related work on agent coordina-
tion. Section 3 introduces our local coordination method. Section 4 intro-
duces the optimization problems we consider in this work. We demon-
strate how optimization problems can have an inherent structure that
can be exploited by LJALs. In Section 5, we propose and evaluate a
method that allows LJALs to learn a coordination structure optimized
for the specific problem task at hand. Finally, we offer some concluding
remarks in Section 6.

2 Background and Related Work

The Local Joint Action Learner (LJAL) approach proposed below relies
on the concept of a Coordination Graph (CG) [6], which describes ac-
tion dependencies among agents. Coordination graphs formalize the way
agents coordinate their actions. In a CG, vertices represent agents, and
edges between two agents indicate a coordination dependency between
these agents. Figure 1(a) is an example of a CG with 7 agents. In this
graph, agent 1 coordinates with agents 2, 3 and 5; agent 4 does not co-
ordinate and thus corresponds to an independent learner; and agent 6
coordinates with agents 5 and 7. Figure 1(a) represents an undirected
CG where both agents connected by an edge explicitly coordinate. A CG
can also be directed, as shown in Figure 1(b). In this graph, the same
agents are connected as in Figure 1(a), but the edges are directed and
the meaning of the graph thus differs. In Figure 1(b), agent 1 now coordi-
nates with agents 2 and 5, but not with 3; agent 4 is still an independent
learner; and agent 6 only coordinates with 5.
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Fig. 1. Two coordination graphs with 7 agents

Guestrin [6] and Kok and Vlassis [8] propose algorithms where agents,
using a message passing scheme based on a CG, calculate a global joint



action by communicating their perceived local rewards. Below we de-
scribe a new approach which is an alternative to Independent Learning
(IL) and Joint Action Learning (JAL) [5] based on CGs, where agents
optimize their local joint actions without extensive communication, using
global reward.

3 Local Joint Action Learners

We now introduce our Local Joint Action Learner (LJAL) framework.
LJALs are a generalization of the Joint Action Learners proposed in [5].
The main idea is that agents keep estimates of expected rewards, not just
for their own actions, but for combinations of actions of multiple agents.
Contrary to the JALs, however, LJALs do not coordinate over the joint
actions of all agents, but rather coordinate with a specific subset of all
agents. An LJAL relies on a coordination graph to encode coordination,
and will keep estimates only for the combinations of its own actions with
those of its direct neighbors in the graph.

It can easily be seen that LJALs cover the entire range of possible co-
ordination settings from Independent Learning (IL) agents, who only
consider their own actions, to Joint Action Learners (JAL), who take
into account the actions of all agents. As LJALs keep estimates for joint
actions with their neighbours in the graph, ILs can be represented with
a fully disconnected graph, whereas the coordination between JALs can
be represented with a fully connected or complete graph.

Figure 2 illustrates the CGs for ILs and JALs, as well as showing another
possible LJAL graph. Note that this representation is not directly related
to the underlying structure of the problem being solved, but rather rep-
resents the solution method being used. In the experiments below, we
will evaluate the effect of matching the CG to the problem structure on
the performance, this in terms of learning speed and final performance.
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Fig. 2. Coordination graphs for independent learners and joint action learners and an
example graph for local joint action learners



3.1 Action selection

We view the learning problem as a distributed n-armed bandit problem,
where every agent must individually decide which of n actions to execute
and the reward depends on the combination of all chosen actions. In the
case that the reward for each agent is generated by the same function,
the game is said to be cooperative. It is with such cooperative or coor-
dination games that we are concerned in this paper. Below, we describe
the action estimation and action selection method used by LJALs.
Each agent estimates rewards for (possibly joint) action a according to
following incremental update formula [11]:

Qt+1(a) = Qt(a) + α [r(t+ 1)−Qt(a)] (1)

where α is the step-size parameter, balancing the importance of recent
and past rewards, and r(t) is the reward received for action a at time t.
(L)JALs also keep a probabilistic model of the other agents’ action selec-
tion, by using empirical distributions, i.e. counting the number of times
C each action has been chosen by each agent. Agent i maintains the
frequency F iaj , that agent j selects action aj from its action set Aj :

F iaj =
Cjaj∑

bj∈Aj
Cjbj

(2)

Using their estimates for joint actions and their probabilistic models of
other agents’ action selection, agents can evaluate the expected value for
selecting a specific action from their individual action set:

EV (ai) =
∑
a∈Ai

Q(a ∪ {ai})
∏
j

F ia[j], (3)

where Ai = ×j∈N(i)Aj and N(i) represents the set of neighbors of agent
i in the CG. This means that the expected value for playing a specific
action, is the average reward of the observed joint actions in which the
action occurs, weighted by their relative frequencies.

Agents choose their actions probabilistically according to a Boltzmann
distribution over the current estimates EV of their actions [11]. The
probability of agent i selecting action ai, at time t is given by:

Pr(ai) =
eEV (ai)/τ∑n
bi=1 e

EV (bi)/τ
(4)

The parameter τ is called the temperature and expresses how greedy
the actions are being selected. Low values for τ represent a more greedy
action selection mechanism.

3.2 LJAL performance

In this section, we briefly evaluate empirically how different types of
LJALs relate to each other in terms of solution quality and computation
speed. Specifically, we will evaluate the effect of increased graph density



on performance; it results in more information, but also higher complex-
ity for agents. Intuitively, we expect that ILs and JALs will lie at extreme
ends of the performance spectrum that LJALs encompass. ILs possess
little information and thus should yield the worst solutions, while JALs,
who in theory have all possible information, should find the best solu-
tions. On the other hand, JALs need to deal with the total complexity of
the problem, resulting in long computation times, while ILs only reason
about themselves and should logically compute fastest of all LJALs.

We compare respectively ILs, LJALs using randomly generated, directed
CGs with an out-degree of 2 for each agent, random LJALs with out-
degree 3, and JALs, see Figure 3. These types of learners were evaluated
on randomly generated distributed bandit problems, i.e. for each possible
joint action of the team, a fixed global reward is drawn from a normal
distributionN (0, 50) (50 = 10×# agents). A single run of the experiment
consists of 200 iterations, also referred to as plays, in which 5 agents
choose between 4 actions, and receive a reward for the global joint action,
as determined by the problem. Every run, LJAL-2 and LJAL-3 get a
new random graph with the specified out-degree. All learners employ
softmax action selection with temperature function τ = 1000× 0.94play.
Figure 4 displays the results of this experiment averaged over 10000
runs and Table 1 shows the speed (running time needed to complete the
experiment) and solution quality for the various learners, relative those
of the JALs.
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Fig. 3. Coordination graphs for independent learners and joint action learners, and
examples of random coordination graphs for local joint action learners with out-degrees
2 and 3.

These results corroborate our hypothesis that ILs and JALs are both ends
of the LJAL performance spectrum. Since any LJAL possesses no more
information than JALs and no less than ILs, their solution quality lies in
between these two extreme approaches. Moreover, because the complex-
ity of LJAL joint actions lies in between ILs and JALs, we also observe
that LJALs perform computationally no faster than ILs and no slower
than JALs. As expected, as the complexity of the CG used increases, so
does the solution quality, but at the cost of a longer computation time.
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Fig. 4. Comparison of independent learners, joint action learners and local joint action
learners on a typical distributed bandit problem.

Learner Avg # partners Speed Solution Quality

IL 0 ×31.5 71.1%

LJAL-2 2 ×12.1 80.5%

LJAL-3 3 ×4.4 89.3%

JAL 4 ×1 100%
Table 1. Comparison of speed and solution quality for independent learners, joint ac-
tion learners and local joint action learners solving a typical distributed bandit problem.
All differences are significant, p < 0.05.

4 Distributed Constraint optimization

In the previous section, we have shown that it is possible to use our
proposed local coordination method to balance the trade-off between
solution quality and computation speed, a problem often encountered in
real settings. In this section, we take this a step further, as we aim to
show that we can exploit a problem’s structure using local coordination,
reducing computational complexity, but minimizing the corresponding
loss in solution quality. Since the simple bandit problem of the previous
section does not have such a structure, as the reward for every joint
action is generated independently, we look at another type of problem,
which is ideally suited to represent problems with an inherent structure,
i.e. Distributed Constraint Optimization Problems.

A Constraint Optimization Problem (COP) describes the problem of
assigning values to a set of variables, subject to a number of soft con-
straints. Each constraint takes the form of a function assigning rewards
to variable assignments. A solution to a constraint optimization prob-



lem assigns a value to each variable and has an associated total reward,
which is the sum of the rewards for every constraint. Solving a COP
means maximizing this reward. A Distributed Constraint Optimization
Problem (DCOP) describes the distributed equivalent of constraint op-
timization. A group of agents must solve a COP in a distributed way,
each agent controlling a subset of the variables in the problem.
Formally, a DCOP is a tuple (A, X , D, C, f), where:
– A = {a1, a2, ..., a`}, the set of agents.
– X = {x1, x2, ..., xn}, the set of variables.
– D = {D1, D2, ..., Dn}, the set of domains. Variable xi can be assigned

values from the finite domain Di.
– C = {c1, c2, ..., cm}, the set of constraints. Constraint ci is a function
Da ×Db × ...×Dk → R, with {a, b, . . . , k} ⊆ {1, . . . , n}, projecting
the domains of a subset of variables onto a real number, being the
reward.

– f : X → A, a function mapping variables onto a single agent.
The total reward of a variable assignment S, assigning value v(xi) ∈ Di
to variable xi, is:

C(S) =

m∑
i=1

ci(v(xa), . . . , v(xk)) (5)

For simplicity, we assume only one variable per agent and only binary
constraints. Unary constraints can easily be added and higher arity con-
straints can be constructed using unary and binary constraints.
Distributed Constraint Problems are used to model a variety of real prob-
lems, ranging from disaster response scenarios [2] and distributed sensor
network management [7], to traffic management in congested networks
[9].

4.1 Relation of LJAL to other DCOP algorithms

As noted in [12], a DCOP can be reformulated as a distributed n-armed
bandit problem. Assign one variable to each agent and let it choose from
the values in the domain corresponding to the variable as it would select
an arm from an n-armed bandit. With such a formulation, we can apply
our previously described learners to DCOPs. In this section, we briefly
evaluate the relation of LJAL to other DCOP algorithms and in which
context LJALs are best applied.
Comparing LJAL to the unifying DCOP algorithm framework proposed
by Chapman et al. in [3], we see that it relates most to the ”local itera-
tive, approximate best response algorithms”. Algorithms in this class are
incomplete – they are not guaranteed to find the optimal solution –, but
on the other hand, they only use local information, having neighbouring
agents communicate only their state, and thus do not suffer from expo-
nential complexity in the size of the problem. These algorithms typically
converge to local optima, or Nash equilibria, and are often preferred in
real-world settings, as these require a balance between solution quality
and computational complexity, or timeliness, and communication over-
head. In contrast, ”distributed complete algorithms”, such as ADOPT



[1] are proven to find the optimal solution for a DCOP, although with
an exponential communication or computational complexity[4, 10].
We are not specifically interested in developing a state-of-the-art DCOP
solver, but rather a multi-agent reinforcement learning technique which
can trade-off solution quality and complexity, taking advantage of a prob-
lem’s structure. Therefore, we explore solving DCOPs in an online re-
inforcement learning scenario. This means that agents do not have any
prior knowledge of the reward function and must sample actions in or-
der to solve the problem. In conventional DCOP settings, local reward
functions are assumed to be deterministic and available to the agent. As
such the problem can be treated as a distributed planning problem. In
our setting, the rewards associated with constraints can be stochastic
and agents may have few opportunities to sample rewards. Moreover,
the agents cannot directly observe the local rewards resulting from their
actions, but only receive the global reward resulting from the joint action
of all agents.
Finally, and most importantly, we do not assume knowledge of the con-
straint graph underlying the problem is always available, an assumption
found all over the literature, and often not justifiable in real-world set-
tings.

4.2 Experiments

Since each constraint in a DCOP has its own reward function and the
total reward for a solution is simply the sum of all rewards, some con-
straints can have a larger impact on the solution quality than others,
i.e. when there is a higher variance in their rewards. Therefore, coor-
dination between specific agents can be more important than between
others. In this section, we will investigate the performance of LJALs on
DCOPs where some constraints are more important than others. We will
generate random, fully connected DCOPs, drawing the rewards of every
constraint function from different normal distributions. The variance in
rewards is controlled by means of weights, formalizing the importance
of specific constraints with respect to the whole problem. We attach a
weight wi ∈ [0, 1] to each constraint ci; the problem’s variance σ is mul-
tiplied with this weight when building the reward function for constraint
ci. A weight of 1 indicates the constraint is of the highest importance,
while 0 makes the constraint of no importance. When building a DCOP,
rewards for constraint ci are drawn from this distribution:

N (0, σwi) (6)

Figure 5 visualizes the structure of the problem we will compare different
LJALs on in the first experiment. The colors of constraints or edges
indicate the importance of that constraint. The darker the constraint,
the higher the weight. The rewards for each constraint function are fixed
before every run with σ = 70 (10 × # agents). The black edges in the
figure correspond to weights of 0.9, light-grey edges are weights of 0.1.
What this graph formalizes, is that the constraints between agents 1, 2
and 3, and 5 and 6 are very important, while the contribution of all other
constraints to the total reward is quite limited.
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Fig. 5. Distributed constraint satisfaction problem used in the experiments. Dark edges
mean important constraints, light edges are unimportant constraints.

We state again that we are interested in using knowledge of the prob-
lem’s underlying structure to minimize the loss in solution quality when
reducing computational complexity. Therefore, in addition to indepen-
dent learners (IL), joint action learners (JAL), and local joint action
learners with a random 2-degree CG (LJAL-1), we compare LJALs with
a CG matching the problem structure (LJAL-2), and the same graph,
augmented with coordination between agents 1 and 5 (LJAL-3), see Fig-
ure 6.
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Fig. 6. Different local joint action learners, visualized by their coordination graphs.
LJAL-1 is an example graph with outdegree 2.

Learner Avg # partners Speed Solution Quality

IL 0 ×442 86.2%

LJAL-1 2 ×172 86.4%

LJAL-2 1.14 ×254 91.6%

LJAL-3 1.43 ×172 90.2%

JAL 6 ×1 100%
Table 2. Comparison of speed and solution quality for independent learners, joint ac-
tion learners and local joint action learners solving a distributed constraint optimization
problem. All differences are significant p < 0.05.

The results, averaged over 100000 runs, are shown in Figure 7 and Table
2. As seen in the previous section, ILs and JALs perform respectively
best and worst in terms of solution quality. More importantly, as we
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Fig. 7. Comparison of independent learners, joint action learners and local joint action
learners on a distributed constraint optimization problem.

compare LJAL-1 and LJAL-2, we see that LJAL-2 perform 6% better,
while being at the same time 1.5× faster. The higher solution quality re-
sults from matching coordination with the problem structure, and lower
computation times are due to the lower complexity (in LJAL-1, each
agent coordinates with two partners, in LJAL-2, an agent coordinates
with only 1.14 partners on average1). This shows that using a specific
CG can help LJALs solve a problem better, using less computational
resources.

A more surprising result is the performance difference between LJAL-2
and LJAL-3. Although agents 1 and 5 in LJAL-3 possess more informa-
tion than in LJAL-2 through increased coordination, LJAL-3 performs
worse in terms of solution quality (and speed, due to the increased coor-
dination). We hypothesise that the extra information about an unimpor-
tant constraint complicates the coordination on important constraints.

We set up an experiment to evaluate the effect an extra coordination edge
has on solution quality. It compares LJAL-2 and LJAL-3 from the previ-
ous experiment with LJAL-4, which like LJAL-2 uses a graph matching
the problem structure, only now augmented with a coordination edge
between agents 4 and 7. As agents 4 and 7 are otherwise not involved
in important constraints, we predict that adding this coordination will
improve performance, as opposed to the extra edge between 1 and 5 in
LJAL-3. Figure 8 and Table 3 show the results this experiment.

Since agents 4 and 7 are not involved in important constraints as de-
fined by the problem, the addition of this edge improves performance
slightly; the agents will learn to optimize the marginally important con-
straint between them, without complicating the coordination necessary
for important constraints. These results show that the choice of the graph
is very important and even small changes influence the agents’ perfor-
mance. In [12], Taylor et al. also conclude that increasing team work is
not necessarily beneficial to solution quality.

1 Three agents with two partners, two with one and two without partners
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Fig. 8. Evaluating the effect of extra coordination edges on solution quality.

Learner Solution Quality

IL 100%

LJAL-2 105.9%

LJAL-3 104.5%

LJAL-4 106.2%
Table 3. Evaluating the effect of extra coordination edges on solution quality. Solution
qualities are relative to that of independent learners. All differences are significant
p < 0.05.

5 Learning Coordination Graphs

In the previous sections, we have shown that matching the CG of local
joint action learners to the inherent structure of a problem helps to im-
prove solution quality without having to deal with the total complexity
of the problem. The next problem we consider is learning this graph.
In some problems, such as the graph colouring problem, this graph may
be obvious. In others, the structure of the problem may not be known
beforehand and thus the designer of the system has no way of knowing
what graph to implement. In this section, we will investigate a way to
allow the local joint action learners to optimize the CG themselves.

5.1 Method

We encode the problem of learning a CG as a distributed n-armed bandit
problem. In the simplest case, each agent is allowed to pick one coordina-
tion partner and has as many actions as there are agents in the problem.
For example, agent 2 choosing action 5 means a directed coordination
edge in the CG from agent 2 to 5. Agent 3 choosing action 3 means agent
3 chooses not to coordinate, so no additional edge in the CG. The com-
bined choices of the agents describe the coordination graph structure. In
the experiments, we limit the learners to either one or two coordination
partners, to evaluate how low complexity systems can perform on more



complex problems. We map the two-partner selection to an n-armed ban-
dit problem by making actions represent pairs of agents instead of single
agents, e.g. action 10 means selecting agents 2 and 3. This is feasible
in small domains, but with more agents and a higher complexity limit
per agent, the problem of choosing multiple partners should be modelled
as a Markov Decision Process, with partner selection spread out over
multiple states, i.e. multi-stage.
After choosing coordination partners, the agents solve the learning prob-
lem using that coordination graph. The reward achieved after learning is
then used as feedback for the choosing of coordination partners; agents
estimate rewards for the partner choices. This constitutes one play at
the meta-learning level. This process is repeated until the graph has
converged due to decreasing temperature in the meta-bandit action se-
lection. We choose to make the agents in the meta-bandit independent
learners, although it would also be possible to allow them to coordinate.
Only then the question of which CG to pick would arise again.

5.2 Learning in DCOPs with a particular structure

In our first experiment, we make agents learn a CG on the problem used
in previous sections and illustrated in Figure 5. As such, we can compare
the learned CGs with the (to us) known problem structure. One meta-
bandit run consists of 1500 plays. In each play, the chosen CG is evaluated
in 100 runs of 200 plays; 100 runs to account for the inherent stochasticity
of the learning process so as to get relatively accurate estimates for the
quality of the chosen graph. This evaluation is basically the same setup
as the experiments in Section 4.2. The average of the reward achieved
over these 100 runs is the estimated reward for the chosen CG.
In addition to ILs, JALs and LJALs with a CG matching the prob-
lem structure, LJAL-1, we compare two teams of LJALS who optimize
their CG, with respective complexity limits of one, OptLJAL-1, and two,
OptLJAL-2, coordination partners. Figure 9 and Table 4 show the results
of this experiment, averaged over 1000 runs, each time a newly generated
problem, although with the same inherent structure. Temperature τ in
the meta-bandit is decreased as such: τ = 1000× 0.994play.

Learner Avg # partners Speed Solution Quality

IL 0 ×374 86.2%

LJAL-1 1.14 ×243 91.1%

OptLJAL-1 0.81 ×290 94.5%

OptLJAL-2 1.28 ×240 94.7%

JAL 6 ×1 100%
Table 4. Comparing the computation speeds and solution qualities of independent
learners, joint action learners, local joint action learners with the supposedly optimal
coordination graph and local joint action learners who optimize their coordination
graph, respectively limited to one and two coordination partners per agent. All differ-
ences are significant p < 0.05, except between OptLJAL-1 and OptLJAL-2.
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Fig. 9. Comparing the solution qualities of independent learners, joint action learners,
local joint action learners with the supposedly optimal coordination graph and local
joint action learners who optimize their coordination graph.

The results show that not only can the agents adapt their coordination
graph to the problem and thus improve performance over agents with
random graphs, they also manage to outperform the LJALs that use the
CG mimicking the problem structure. That graph is surprisingly not the
optimal coordination structure, as the optimizing agents in general find
better graphs, graphs with a lower complexity; a maximum complexity
of one coordination partner in the case of OptLJAL-1, as opposed to two
partners in the graph matching the problem. OptLJAL-2 has similar per-
formance as OptLJAL-1, although with a slightly higher complexity and
thus longer computation time. It is important to note that graphs opti-
mized by OptLJAL-2 in general have a complexity of 1.28, which is very
low considering the highest possible complexity is 2. More coordination
again does not appear to be always beneficial. Compare for example the
average complexities of the resulting graphs, 0.81 and 1.28 for limits 1
and 2 respectively, with that of the random graphs in the exploration
stages: 0.86 and 1.59.

To get a better insight into how OptLJAL-1 and OptLJAL-2 can outper-
form LJAL-1, we look at some of the optimized graphs for this problem.
Figure 10 shows the graphs learned by OptLJAL-1 and OptLJAL-2 re-
spectively on five instances of the given problem. These graphs represent
cases where optimizing agents significantly outperformed LJAL-1, who
mimick the problem structure in their CG.

When viewing these optimized graphs, we would expect to find at least
some of the problem structure reflected in them. This is clearly the case.
In every single graph, we find that agents 5 and 6 learn to coordinate.
There is also always some coordination in the agents 1-2-3 cluster. This
is also reflected in Table 5, where the average number of edges between
any two agents in a cluster is shown. Agents 1, 2 and 3, and agents 5
and 6 coordinate significantly more than they would in random graphs,



while 4 and 7 coordinate less. Counting the incoming edges, we note that
agents 1, 2, 3 have on average 1.0 agents adapting to them, 5 and 6 have
1.2 such agents, while 4 and 7 only 0.1.

1

2

3

4

5
6

7

1

2

3

4

5
6

7

1

2

3

4

5
6

7

1

2

3

4

5
6

7

1

2

3

4

5
6

7

1

2

3

4

5
6

7

1

2

3

4

5
6

7

1

2

3

4

5
6

7

1

2

3

4

5
6

7

1

2

3

4

5
6

7

OptLJAL-1

OptLJAL-2

Fig. 10. Optimized coordination graphs. Graphs in the top row are limited to one
coordination partner per agent, graphs in the bottom row are limited to two partners.

1-2-3 5-6 4-7

OptLJAL-1 0.68 1.53 0.13

Random-1 0.28 0.28 0.28

OptLJAL-2 0.85 1.54 0.33

Random-2 0.53 0.53 0.53
Table 5. The average number of directed edges between any two agents in a cluster.
Agents in important problem substructures coordinate significantly more often in op-
timized graphs than in random graphs. The inverse is true for agents in unimportant
substructures.

This shows that the agents can determine which agents are more im-
portant to coordinate with. Still, this does not explain how the agents
with an optimized graph can perform better with a lower coordination
complexity than those who use the problem structure as a coordination
graph. We believe the explanation is two-fold. First, in optimized graphs,
agents often practice something we like to call ”follow the leader”. Ba-
sically, this comes down to one agent performing as leader, often an in-
dependent learner, while other agents coordinate unilaterally with that
agent. This allows the other agents to choose actions in function of the
same leader, while that leader can learn without knowing that other
agents are coordinating, or rather adapting, to him, simplifying the prob-
lem for every agent by concentrating the exploration in certain parts of
the search space. This is especially beneficial when only a limited amount
of trials is allowed. Secondly, agents that do not coordinate directly are
independent learners relative to each other. Independent learners have
been shown to be able to find an optimum by climbing, i.e. each agent



in turn changing an action [5]. The starting point for this climbing, in a
two-dimensional game, is usually the row and column with the highest
average reward. If the global optimum can be reached by climbing from
this starting point, independent learning suffices to optimize the problem.
When analysing the reward functions for these agents that choose to be
independent learners, we see that they are involved in games where such
climbing is possible. This is also the reason why a team of independent
learners can perform reasonably well in this setting.

5.3 Learning in DCOPs with random structure

We have previously only focused on one specific problem, with only two
very distinct categories of constraint importance, i.e. very important and
very unimportant (respectively 0.9 and 0.1 as weight parameters). Such
clear distinctions are not realistic and therefore we shall now investigate
problems with constraints of varying importance. One issue with such
problems is that, even if the structure of the problem is known, it is
not easy to decide when coordination is important and when not. Is
it necessary to coordinate over the constraint with weight 0.6, and not
over the one with weight 0.59? Learning the graph should prove to be
a better approach than guessing or fine-tuning by hand, as evidenced
by the previous experiment where the preprogrammed graph was shown
not to be optimal compared to other graphs of similar and even lower
complexity.
The next experiment compares ILs, JALs, LJALs with a fixed CG, LJAL-
1, and two teams of LJALs learning a CG, OptLJAL-1 and OptLJAL-2,
on DCOPs with a randomly generated weights graph. The non-optimizing
LJALs have a CG derived from the problem’s weight graph; all con-
straints with weight 0.75 and higher are included in the graph. The
results of this experiment are shown in Figure 11 and Table 6.

Learner Avg # partners Speed Solution Quality

IL 0 ×315 88.9%

LJAL-1 1.5 ×101 90.2%

OptLJAL-1 0.8 ×254 94.2%

OptLJAL-2 1.28 ×204 94.3%

JAL 6 ×1 100%
Table 6. Comparing the computation speeds and solution qualities of independent
learners, joint action learners, local joint action learners with the supposedly optimal
coordination graph and local joint action learners who optimize their coordination
graph, respectively limited to one and two coordination partners per agent. All differ-
ences are significant p < 0.05, except between OptLJAL-1 and OptLJAL-2.

Although the LJALs with fixed CG coordinate over a quarter of all the
constraints, and the most important ones at that, they do not manage
to improve much over the solutions found by ILs. These LJALs have a
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Fig. 11. Comparing the solution qualities of independent learners, joint action learners,
local joint action learners with fixed coordination graph and local joint action learners
who optimize their coordination graph on distributed constraint optimization problems
with a random weights graph.

CG with an average complexity of 7×6×0.25
7

= 1.5 coordination partners
per agent. Compare that to the average complexity of 0.8 in OptLJAL-
1. With less coordination and therefore less computation, they again
manage to improve much on the solution quality.

6 Conclusion

In this paper, we investigated local coordination in a multi-agent re-
inforcement learning setting as a way to reduce complexity. Local joint
action learners were developed as a trade-off between independent learn-
ers and joint action learners. Local joint action learners make use of a
coordination graph that defines which agents need to coordinate when
solving a problem. The density of the graph determines the computa-
tional complexity for each agent, and also influences the solution quality
found by the group of agents.
Problems that have an inherent structure, making coordination between
certain agents more important, can be solved by local joint action learn-
ers that have a coordination graph adapted to the structure of the prob-
lem. Learners using such a graph can perform better than those using
a random graph of higher density, both in terms of solution quality and
computation time.
We have also shown that the coordination graph itself can be optimized
by the agents to better match the potentially unknown structure of
the problem being solved. This optimization often leads to unexpected
graphs, where important constraints in the problem are not mimicked
in the coordination graph by a direct coordination link. Instead, this
coordination is achieved through mechanisms such as leader-follower re-
lationships and relative independent learning.
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