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What’s in Black-box Modelling 
 Sampling of the input-output behaviour 

 Cover all time-constants / frequencies 

 Cover all relevant amplitudes 

 Cover all meaning input combinations 

 Select the training / testing data-sets 

 Generate an extensive set of possible 

input variables (loop to reduce) 

 Select the regression engine 

 Select the engine’s parameters 

 Run the regression (model extraction) 

 

 Validate the model 

 

 
ULB – Apr. 2013 3 

Design of 

Stimuli

Implementation Testing

Simulations

Feature Identification

Data Pre-

processing

State-space Embedding

Regression



Some Regression Engines 

Artificial Neural Networks Support-Vector Machines 

 Historically one of the first 

tools of machine learning 

 Many publications of ANN-

based models in electronics 

 Known issues : 

 Sensitivity to initial condition 

 Difficult to estimate optimal 

parameters (eg. # layers) 

 Prone to over-fitting 

 Stability issues when feedback 

 

 Developed to overcome 

limitations of ANN’s 

 Currently behind many 

hand-writing recognition and 

data-base mining algorithms 
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Artificial Neural Networks 

 Weighted sum of inputs 

 Every neuron applies a “non-linear” threshold function 

 Learning based on concept of back-propagation of errors 

 Multi-layer PERCEPTRON : 
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Support-Vector Machines 

 SVM’s realize a kind of  “lean regression” 

 Insensitivity tube  of width e 

 Model tends to minimize x 

 Model favors lower weights 
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Kernel function enabling 

high-dimensional nonlinearities 



Support-Vector Machines 

 Very popular in machine learning : 

 Excellent performance in a variety of learning problems; 

 Theoretical guarantees about their performance; 

 Lower susceptibility to local minima; 

 Deals well with highly dimensional input data. 

 However, machine-learning practitioners seem to have an 

unlimited budget for computational power 

 Usually extraction is run targeting minimal error 

 A large model results (many SV’s) which is slow to evaluate 

 Some reduction algorithms were proposed to discard SV’s 

 Efficient analogue abstractions still require better… 
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Support-Vector Machine 

 Constructive « active learning » : 

Only add support-vectors where absolutely necessary 

(allows to generate compact models with good accuracy) 
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Importance of Data Post-processing 

 Scaling / normalizing the data helps both for ANN & SVM’s 

 Otherwise there is a risk that significant errors between low-

amplitude data-points are just neglected 

 Addition of white noise : 

 improves robustness,  stability and generalisation ability (Jaeger ‘02) 

 Avoids the risk that the extraction « focusses » on one input 

 In case of feedback loop,  renders the model robust against 

numerical issues  
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Normalised root mean square error 

 NRMSE = sqrt(mean((t-y).^2)/var(t));  

 sqrt = square root, mean = mean value, var = variance 

 t = target 

 y = model prediction 

 0 - perfect match 
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Feature Selection Algorithm 

 How many inputs do we need to achieve good accuracy ? 

 

 

 

 

 

 

 

 A sufficient number,  but also not too many !  

 Good correlation between training and validation data-sets 

 Select features based on other data-set than training set usually 

improves the model quality 
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Feature Selection Algorithm 

 Feature selection also known as subset selection or variable selection 

(Guyon, 2006) 

 Wrapper methods 

 Feature filtering 

 Embedded techniques 

 

 Training point selection methods are also actively investigated,  e.g.  

 (Wang, 2005) presents training data selection for support vector machines 

 (Patan, 2010) presents selection of training data for locally recurrent ANNs 

 Active learning methods can also be used for training point selection 

 

 Zhang et al. in the recent paper (Zhang, 2012) advocate to do the feature 

selection and training point selection in the same time. 

 Feature and Training point Selection and Ranking = FTSR 
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Feature Selection Algorithm 

 You can’t beat a feature selection algorithm… 

 

 

 

 FTSR : feature selection 

 GA : genetic algorithm 

 PSO : particle swarm optimization 

 

 Use feature and data-point selection methods ! 

 FTSR is key to fully automate the model generation 
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Auto-zero Bandgap Test-case 

 Stable voltage reference circuit 

 Followed by a buffer (to isolate from the load) 

 Technology imperfections in the buffer spoil the reference 

  Circuit has an auto-calibration routine (internal states) 
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Band-gap Test-case 

 Voltage bandgap reference with offset compensation  

 ONSEMI test-case with 242 transistors 

 modelling of the VBG voltage in the time-domain 

 Comparison of standard SVR and new TASVR  
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Band-gap Test-case (continued) 

 Comparison of standard SVR and new TASVR :  

Absolute model Errors 

 

 

 

 

 

 

 

 

 Same level of errors but TASVR >10x faster 
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The Problem of Ubiquitous Feedback 

 Analogue circuits  feedback  

(everywhere you don’t want it) 

 

 

 Must generate behavioural models 

with multiple feedbacks : 

eg. delayed replica’s of output voltage 

 

 Training of recurrent behavioural models is a problem 

 You can sample the output of the target system 

 But you can not sample the output of a non-existent model… 

 Risk that small modelling errors get amplified 

 ULB – Apr. 2013 17 



Training of Recurrent Models 

 Series-parallel configuration (open-loop) : 

Use training data points as recurrent input 

 

 

 

 

 Compensate the best you can by tuning 

the regression parameters  

on the model evaluated  

in closed-loop configuration 
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Stability of the models with feedbacks 

 The stability analysis of recurrent neural networks is 

mostly based on simplification of the problem, e.g.  

 Lyapunov's indirect and direct methods in (Cao, 2006) 

 By employing a new Lyapunov–Krasovskii functional, a linear 

matrix inequality (LMI) approach is developed to establish 

sufficient conditions for the RNNs to be globally exponentially 

stable in (Liu, 2006). 

 Stability analysis does not include the numerical stability 

problems of the circuit simulator! 
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CMOS Inverter Test-case 

 Basic building block of all logic circuits 

 Consists mainly of two transistors 

 Switching speed of the output depends on the load 

(usually capacitive) 

 Driving strengths of the transistors depend on output 

voltage (drain voltage) 

 Need to have output feedback in order to capture 

dynamic switching behaviour 
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CMOS inverter: Model does not work !  

 Results in function of selected integration method 

 Model works fine in MATLAB / PYTHON, not in SPECTRE… 

 Applying a chirp signal on the gate 

 Looking at the gate charging current : 

ULB – Apr. 2013 21 



Derivatives are generally problematic 

 Derivatives calculated by SPECTRE for a linear ramp : 
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Algorithmic Solution to the Problem 

  Add white noise to the data-set…  
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Algorithmic Solution to the Problem 

 Adding noise in each iteration.  We are trying to find minumum noise level to 

supress the circuit numerical problems. 

 Number of SPICE evaluations should be as small as possible because they are 

computationally expensive. 

 Minimum number of iterations according to the binary search algorithm 

 A binary search halves the number of items to check with each iteration, so 

locating optimal noise level takes logarithmic time. 

 Average number of SPICE evaluations is log2(N)-1 where N is a number of 

possible levels that can be tested, e.g. for SNR from 0 to 100 dB with 

resolution of 0.5, average number of evaluations is only 6.6! 

 If no upper  (or lower) limit is defined, average number of evaluations is 

2*log2(k)+1 where k is the (unknown) minimum noise level. 
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Verilog-A Model (CMOS inverter) 
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CMOS inverter model with CISB 

 (a) before and (b) after application of the CISB method 

 Signal to noise (SNR) ratio of the added white Gaussian 

noise to the feedback signal is equal to 75 dB  

 NRMSE = 2.1E-5 (with CISB) 
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CMOS inverter model with CISB 

 (a) before and (b) after application of the CISB method 

 (a) zoomed in at the point where the simulator diverges 

 Signal to noise (SNR) ratio of the added white Gaussian 

noise to the feedback signal is equal to 50 dB. 

 NRMSE = 0.048 
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Modelling of Resistive Mixer 

 Training: - frequency fRF is varied from 5.1 GHz to 5.3 GHz (50 

MHz step) - power of VRF is varied from -30 dBm to -40 dBm (step 

2 dBm) - IF port is loaded with 45, 50 and 55 Ohm resistor 

 

 Testing: - frequency fRF is 5.225 GHz - power of VRF  is set to -35 

dBm - IF port loaded with 52.5  Ohm- Not used in training set! 
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Modelling of VCO 

 GaAs 0.5 um SCFL Voltage Controlled Differential Oscillator 

 Using signal generator as the output stage 

 Only 10 to 20 input-output pairs needed! 
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Conclusions (modelling tips) 

 Mix generic stimuli (e.g. chirp waveform) with typical stimuli 

for the target electronic circuit to obtain training data set. 

 Scale the data before applying machine learning techniques. 

 Use delays to capture dynamic behaviour rather than 

derivatives, as it will result in much more stable model code 

 Use feature/training data point selection methods. 

 Don’t use ANNs, they are prone to overfitting.  

 If possible, simplify the modelling problem!  

Example: VCO signal generator. 

 Always test in the circuit simulator.  

Adding white noise can improve stability. 
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