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What'’s in Black-box Modelling

» Sampling of the input-output behaviour
J [Simulations}

Cover all time-constants / frequencies

Design of
Stimuli

Cover all relevant amplitudes

Eeature ldentification Cover all meaning input combinations

g - . )
R— » Select the training / testing data-sets
| processing » Generate an extensive set of possible
( A input variables (loop to reduce
State-space Embedding P ( P )
» Select the regression engine
Regression .y
[ : } » Select the engine’s parameters
. ) » Run the regression (model extraction)

Validate the model

v

[ Implementation } [Testing}
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9.

Some Regression Engines

» Historically one of the first » Developed to overcome
tools of machine learning limitations of ANN’s

» Many publications of ANN- » Currently behind many
based models in electronics hand-writing recognition and

» Known issues : data-base mining algorithms
Sensitivity to initial condition

Difficult to estimate optimal
parameters (eg. # layers)

Prone to over-fitting

Stability issues when feedback
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Artificial Neural Networks

» Weighted sum of inputs

» Every neuron applies a “non-linear” threshold function

» Learning based on concept of back-propagation of errors
» Multi-layer PERCEPTRON :

P A\ A\
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Support-Vector Machines

» SVM’s realize a kind of “lean regression”

Insensitivity tube of width ¢ f(x)=(w,x) + b

Model tends to minimize & f oo N

Model favors lower weights

I
|
minimise §||W||2 +C Z &+ &)
o1

Vi—(W.Xpp—b < e+¢
subjectto § (W.Xp)) +b—-y < e+¢
&in & = 0

v
y(x)=Y oz;{K (xk,Xx) K b with unknowns « and b.
k=1

N Kernel function enabling
(w — Z P (Xk)) high-dimensional nonlinearities
k=1




Support-Vector Machines

» Very popular in machine learning :
Excellent performance in a variety of learning problems;
Theoretical guarantees about their performance;
Lower susceptibility to local minima;

Deals well with highly dimensional input data.

» However, machine-learning practitioners seem to have an
unlimited budget for computational power
Usually extraction is run targeting minimal error
A large model results (many SV’s) which is slow to evaluate

Some reduction algorithms were proposed to discard SV’s

» Efficient analogue abstractions still require better...
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Support-Vector Machine

» Constructive « active learning » :
Only add support-vectors where absolutely necessary
(allows to generate compact models with good accuracy)

m— 50X )/X
1 0de ]

yrototype vectors
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Importance of Data Post-processing

Pre-processing technique Test data set NRMSE

improvement
Scaling (from [-1 to 1]) 34.5%
White noise 3.5%

Moving average filters (in- 7.1%
stead of time delays)

» Scaling / normalizing the data helps both for ANN & SVM’s

Otherwise there is a risk that significant errors between low-
amplitude data-points are just neglected

» Addition of white noise :

improves robustness, stability and generalisation ability (Jaeger ‘02)

Avoids the risk that the extraction « focusses » on one input

In case of feedback loop, renders the model robust against
numerical issues
9 ULB —Apr. 2013



Normalised root mean square error

» NRMSE = sqgrt(mean((t-y).*2)/var(t));
sqrt = square root, mean = mean value, var = variance
t = target
y = model prediction
0 - perfect match
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» A sufficient number, but also not too many !

» Good correlation between training and validation data-sets

Select features based on other data-set than training set usually

improves the model quality
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Feature Selection Algorithm

» Feature selection also known as subset selection or variable selection
(Guyon, 2006)

Wrapper methods
Feature filtering

Embedded techniques

» Training point selection methods are also actively investigated, e.g.
(Wang, 2005) presents training data selection for support vector machines
(Patan, 2010) presents selection of training data for locally recurrent ANNs

Active learning methods can also be used for training point selection

» Zhang et al.in the recent paper (Zhang,2012) advocate to do the feature
selection and training point selection in the same time.

Feature and Training point Selection and Ranking = FTSR
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Feature Selection Algorithm

» You can’t beat a feature selection algorithm...

(14 2
FTSR , pert . GA PSO
(manual selection)
NRMSE: 0.045 0.18 0.11 0.15

FTSR : feature selection

GA : genetic algorithm
PSO : particle swarm optimization

» Use feature and data-point selection methods !
» FTSR is key to fully automate the model generation

ULB —Apr.2013



Auto-zero Bandgap Test-case

Lo = autput
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» Stable voltage reference circuit == -

] s0.0 100 150 200
time {us)

» Followed by a buffer (to isolate from the 'Ioad)
» Technology imperfections in the buffer spoil the reference

» Circuit has an auto-calibration routine (internal states)
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Band-gap Test-case

» Voltage bandgap reference with offset compensation
ONSEMI test-case with 242 transistors

modelling of the VBG voltage in the time-domain

» Comparison of standard SVR and new TASVR
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= Circuit level simulations == Circuit level simulations :
1214 evioens == == SVR (297 SV) e 1214 erieenns == == TASVR (20 SV) e
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(a) SVR (297 SVs) vs. circuit level simu- (b) TASVR (20 SVs) vs. circuit level sim-
lations ulations
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Band-gap Test-case (continued)

» Comparison of standard SVR and new TASVR :
Absolute model Errors

1.6 — 1.6
: | =——SVR (297 SV, NRMSE =0.18) | ; : : : : : ;
1.4..... .......... .......... .. ......... . ......... . .......... 14-... .......... .......... .. ......... . ......... . ..........
2 S 2 b
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lations ulations

» Same level of errors but TASVR >|0x faster
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I
, . |
(everywhere you don’t want it) ivs

» Analogue circuits = feedback | __— el
|
I
'L

» Must generate behavioural models "7
with multiple feedbacks : X(t-z2) o o V()
. 9 ;"* Y(t'rﬁ)H :

eg. delayed replica’s of output voltage i yi.,os

------------------------------------------------------

You can sample the output of the target system
But you can not sample the output of a non-existent model...

Risk that small modelling errors get amplified

|7 ULB —Apr.2013



Training of Recurrent Models

» Series-parallel configuration (open-loop) :
Use training data points as recurrent input

X(t) o= OPTIMISATION
' FOR HYPER-
X(ti-t,) o= PARAMETERS
X(tr12) o> >0 Y'(t)

Y(ti-13) o

Y(ti-T4) o—>

- T Tcost
FUNCTION |

SET MODEL
HYPER- I
PARAMETRS |
I

I
I
I
I
| BUILD SVR
I
I
I
I
I

MODEL IN SERIES- |
PARALLEL

CONFIGURATION?

EVALUATE SVR
MODEL IN
PARATTLEL

CONFIGURATION I

| S ——— — —

» Compensate the best you can by tuning

the regression parameters
X(t) o—>
on the model evaluated X(tpr,) o>
in closed-loop configuration X(t-1,) 0—>
== >Y (1 -15) 0>
>Y'(t-14) 0>

"



Stability of the models with feedbacks

» The stability analysis of recurrent neural networks is
mostly based on simplification of the problem, e.g.
Lyapunov's indirect and direct methods in (Cao, 2006)

By employing a new Lyapunov—Krasovskii functional, a linear
matrix inequality (LMI) approach is developed to establish
sufficient conditions for the RNNs to be globally exponentially
stable in (Liu, 2006).
» Stability analysis does not include the numerical stability
problems of the circuit simulator!
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CMOS Inverter Test-case

s Sy

» Basic building block of all logic circuits

» Consists mainly of two transistors L

» Switching speed of the output depends on the Ioad
(usually capacitive)

» Driving strengths of the transistors depend on output
voltage (drain voltage)

» Need to have output feedback in order to capture

dynamic switching behaviour
20 ULB —Apr.2013



CMOS inverter: Model does not work !

» Results in function of selected integration method
Model works fine in MATLAB / PYTHON, not in SPECTRE...
Applying a chirp signal on the gate
Looking at the gate charging current :

200 T sk —
m— Trapezoidal e Trapezoidal
150} Gear's second order 6F Gear's second order
R—— - Y P Euler
100} - 4t
< <
3 50F = 2
z < |
- 0 = 0OF \
5 -s0p £ -2r
@] @]
-100F A
-150} -6r
200 . ; i ; -8t i i i i ]
0 20 40 60) 80 100 392 3921 39.22 3923 3924 3925
Time [us] Time [us]
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Derivatives are generally problematic

» Derivatives calculated by SPECTRE for a linear ramp :

1.4 . . . : : 200
5] ] 150}
| 100}
_ 3
~ = s0f
— 0.8} P
E >0
Z 0.6} 3
= = -50F
=]
0.4 100
02 -150
0 i i . . . 2200 ~ : . ~ - -
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Time [ns] Time [ns]
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Algorithmic Solution to the Problem

» Add white noise to the data-set...

ANALYZE THE
TYPICAL CIRCUIT
INPUT SIGNALS i

v

SELECT OR CREATE
MODEL INPUTS AND
OUTPUTS BASED ON
ANALYSIS IN STEP 1 ,

L 2
SIMULATE THE
MODEL IN THE

CIRCUIT SIMULATOR

OUTPUT, CONVERGENCE
PROBLEMS OR LARGE

ADD MORE NOISE TO
THE TRAINING SET 4

v

Algorithm 1: Method for checking and improving stability of black-box models
(CISB)

Step 1: The typical circuit inputs are analyzed in order to create sample
cases of normal operation of the circuit.

Step 2: Model inputs and outputs are selected or created based on the
analysis done in Step 1.

Step 3: Simulate the model in the circuit simulator.

Step 4: If the output is unbounded, convergence problems occur or the
model output significantly deviates from the expected behaviour then go
to Step 5, otherwise go to Step 2.

Step 5: Add more noise to the training data set.

Step 6: Rebuild the model and go to Step 2.

[ REBUILD MODEL j——

23
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Algorithmic Solution to the Problem

>

Adding noise in each iteration. We are trying to find minumum noise level to
supress the circuit numerical problems.

Number of SPICE evaluations should be as small as possible because they are
computationally expensive.

Minimum number of iterations according to the binary search algorithm

A binary search halves the number of items to check with each iteration, so
locating optimal noise level takes logarithmic time.

Average number of SPICE evaluations is log2(N)-| where N is a number of
possible levels that can be tested, e.g. for SNR from 0 to 100 dB with
resolution of 0.5, average number of evaluations is only 6.6!

If no upper (or lower) limit is defined, average number of evaluations is
2*log2(k)+1 where k is the (unknown) minimum noise level.
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Verilog-A Model (CMOS inverter)

// Example of a szimple model of inverter built by TASVR algorithm.

// The number of SV is limited to 10 5Vs (that is the reason why the behavioural descripion is small).
// INITIALISATION

"discipline.h

‘include "constants.h

‘include

S/ In this simple example, inputs are input voltage (inlE) and delayed input wvoltage (inZE).

// The output is the ocutput voltage.

/{ The delayed version can inZE can be generated inside of Verilog A code by absdelay command.
module Vout inverter tran( inlE, in2E, outE, gnd );

electrical inlE, in2E, outE, gnd;

real ol; real i1l; real 1i2;

analog begin

// We first must scale 1nputs. In this case we scale to [-1,1] range.

=(((1)-(-1))*(V(inlE, gnd)-( o)y /(o 3.3)—( o)) + (=1);
(1)~ (-1) ) * (Vv (in2E, gnd,-—-._—l-':'-l-‘:i%:“.*l.TECETT%}}}. {(15596982.6714803) - (-16140851.7306778)) + (-1);

// module behavicral descriptien. It is generated by TASVR algorithm and limited to 1038V.

ol = + i2*({4.87507886=-01) + (2/
(l+exp (-2 .55055755e-01))))-1)* (4.
(2.755752 Y))-1)*+(-9.60205344=2-02)
(2.715125 yo+ {2/ (1+texp (2% (11% (4.0
01) + (2.¢ 214=2-03))))-1);
/4 nt last, we ==t the output voltages. Notice rescallng before applylng voltage to the output of the model'
V(outE,gnd) <+ ((ol-{ {
endmodule
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CMOS inverter model with CISB

b T N\ Modol 1,.‘ ........... oo ——— o P Model]
: : : : Target \ : B : I Target
: : : : : : L S LI : !
05 S0 WO PN N S O ST O TR _ 05kt e gt SR | R T T -
> : : : : : > \ : : : P
g‘ E_ \ ] || |
(::s ........................................................................... g OF--- R R S PRI . ................... | P
© o) v
= =] |} : |
=] =} "
= = P
................................................................. —OSF e e L D R A
[ |
] ' :
- : '
| I :
] ¥
. =1 ¥ h ¥ SRR LTI
200 0 50 100 150 200 250 300
Time [ns] Time [ns]

(a) (b)
» (a) before and (b) after application of the CISB method

Signal to noise (SNR) ratio of the added white Gaussian
noise to the feedback signal is equal to 75 dB
NRMSE = 2.1E-5 (with CISB)
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» (a) before and (b) after application of the CISB method
(a) zoomed in at the point where the simulator diverges

Signal to noise (SNR) ratio of the added white Gaussian
noise to the feedback signal is equal to 50 dB.
NRMSE = 0.048
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Modelling of Resistive Mixer

» Training: - frequency fg; is varied from 5.1 GHz to 5.3 GHz (50
MHz step) - power of Vi, is varied from -30 dBm to -40 dBm (step
2 dBm) - IF port is loaded with 45, 50 and 55 Ohm resistor

» Testing: - frequency fgr is 5.225 GHz - power of Vi, is set to -35
dBm - IF port loaded with 52.5 Ohm- Not used in training set!

-0.5v

fLo=4.25 GHz

28
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Modelling of VCO
» GaAs 0.5 um SCFL Voltage Controlled Differential Oscillator

» Using signal generator as the output stage

Only 10 to 20 input-output pairs needed!

3'5“ ,.0-0-:
D /mage\'vcono
a :
E 3.0 /
:E 25 / w— Device-level simulation
' o Proposed Model
SVM, |—Tox . 3 "
X ,‘ MPLITUDE blgnal " V‘“ | - 2,04 _ :
Verne— SVM, Cenersitor &) mkﬁ*
KBRS 3 ¥ ] -

SV, Jirew —o Voui = 1,54 / 3-stage VCDRO Ea
3
S
L=
<L

1.0f 2-stage VCDRO

0 1 2 3 4 5
VCTRL Vi
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Conclusions (modelling tips)

» Mix generic stimuli (e.g. chirp waveform) with typical stimuli
for the target electronic circuit to obtain training data set.

» Scale the data before applying machine learning techniques.

» Use delays to capture dynamic behaviour rather than
derivatives, as it will result in much more stable model code

» Use feature/training data point selection methods.
» Don’t use ANNSs, they are prone to overfitting.

» If possible, simplify the modelling problem!
Example:VCO signal generator.

» Always test in the circuit simulator.
Adding white noise can improve stability.
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