
Solving Satisfiability in Fuzzy Logics
with Evolution Strategies

Tim Brys∗, Yann-Michaël De Hauwere∗, Martine De Cock† and Ann Nowé∗
∗Computational Modeling Lab

Vrije Universiteit Brussel, VUB
Pleinlaan 2, B-1050 Brussels

Email: {tim.brys, ydehauwe, ann.nowe}@vub.ac.be
†Dept. of Applied Math. and Comp. Sc.

Universiteit Gent, UGent
Krijgslaan 281 (S9), B-9000 Gent
Email: martine.decock@ugent.be

Abstract—Satisfiability in propositional logic is well researched
and many approaches to checking and solving exist. In infinite-
valued or fuzzy logics, however, there have only recently been
attempts at developing methods for solving satisfiability. In this
paper, we propose a new incomplete solver, based on a class of
continuous optimization algorithms called evolution strategies.
We show experimentally that our method is an important
contribution to the state of the art in incomplete fuzzy-SAT
solvers.

I. INTRODUCTION

A logical formula, or a set of formulas, is said to be
satisfiable if there exists a truth assignment to its variables that
makes every formula true. Satisfiability checking is verifying
whether such an assignment exists, and satisfiability solving
means finding such an assignment. This problem is known as
SAT in propositional logic [1] and is of interest to researchers
from various domains [2], [3], as many problems can be
reformulated as a SAT problem and subsequently solved by a
state-of-the-art SAT solver.

In fuzzy logics, the same principle of satisfiability exists,
SAT∞, and, like its classical counterpart, is useful for solving
a variety of problems. Indeed, many fuzzy reasoning tasks
can be reduced to SAT∞, including reasoning about vague
concepts in the context of the semantic web [4], fuzzy spatial
reasoning [5] and fuzzy answer set programming [6], which in
itself is an important framework for non-monotonic reasoning
over continuous domains (see e.g. [7]–[9]).

Solving satisfiability in fuzzy logics has however received
much less attention than its counterpart in classical logics.
In [10], Hähnle proposes a mixed integer programming (MIP)
approach to satisfiability checking in Łukasiewicz logic, which
unfortunately suffers from scalability issues that are inherent
to MIP. Schockaert et al. conversely propose a solver in [11]
which reduces the infinite-valued logic to a finite-valued one
and then applies a constraint satisfaction solver to check satis-
fiability. This discretization makes the approach ineffective on
certain classes of problems. We will elaborate on this further
on.

In this paper, we consider satisfiability checking and solving

as an optimization problem in a continuous domain. We pro-
pose an incomplete solver capable of deciding SAT∞ but not
UNSAT∞1, based on the state-of-the-art in evolution strategies
(ES), a subclass of evolutionary computation algorithms. In the
next sections, we provide the necessary background on fuzzy
logic and ES, followed by the formulation of SAT∞ as an
optimization problem. Lastly, we experimentally evaluate our
solver and compare it with the incomplete solver from [11],
and conclude with a discussion.

II. FUZZY LOGIC AND SAT∞
In fuzzy logics [12], truth is expressed as a real number

taken from the unit interval [0, 1]. Essentially, there are an
infinite number of truth degrees possible. A formula in fuzzy
logic is built from a set of variables V , constants taken from
[0, 1] and n-ary connectives for n ∈ N. An interpretation is
a mapping I : V → [0, 1] that maps every variable to a truth
degree. We can extend this fuzzy interpretation I to formulas
as follows:
• For each constant c in [0, 1], [c]I = c.
• For each variable v in V , [v]I = I(v).
• Each n-ary connective f is interpreted by a function f :

[0, 1]n → [0, 1]. Furthermore we define

[f(α1, . . . , αn)]I = f([α1]I , . . . , [αn]I)

for formulas αi with 1 ≤ i ≤ n.
The connectives in fuzzy logics typically correspond to con-

nectives from classical logic, such as conjunction, disjunction,
implication and negation, which are interpreted respectively by
a t-norm, a t-conorm, an implicator and a negator. A triangular
norm or t-norm T is an increasing, associative and commuta-
tive [0, 1]2 → [0, 1] mapping that satisfies the boundary condi-
tion T(1, x) = x. Similarly, a triangular conorm or t-conorm S

is an increasing, associative and commutative [0, 1]2 → [0, 1]
mapping that satisfies the boundary condition S(0, x) = x. An
implicator I is a [0, 1]2 → [0, 1] mapping that is decreasing

1A set of formulas is UNSAT(∞) when there exists no variable assignment
that satisfies all formulas.

978-1-4673-2338-3/12/$31.00 ©2012 IEEE

in its first argument, increasing in its second argument and
that satisfies the properties I(0, 0) = I(0, 1) = I(1, 1) = 1
and I(1, 0) = 0. A negator N is a decreasing [0, 1] → [0, 1]
mapping that satisfies N(0) = 1 and N(1) = 0.

As an example of a particularly popular fuzzy logic, in
Łukasiewicz logic, negation ¬, conjunction ⊗, disjunction ⊕
and implication → are interpreted as follows:
• [¬α]I = 1− [α]I
• [α⊗ β]I = max([α]I + [β]I − 1, 0)
• [α⊕ β]I = min(1, [α]I + [β]I)
• [α→ β]I = min(1− [α]I + [β]I , 1)

for formulas α and β.
An interpretation I is said to be a model of a set of formulas

Θ iff l ≤ [α]I ≤ u for every formula α ∈ Θ, given a lower
l and upper bound u for that formula (usually u is 1, and
in classical logic even both l and u are 1). An example of
a formula with three variables v1, v2, and v3 in Łukasiewicz
logic, with bounds is:

0.5 ≤ ¬(v1 ⊗ v2 ⊗ ¬v3) ≤ 1 (1)

One can easily verify that I1 with I1(v1) = 0, I1(v2) = 0
and I1(v3) = 1 is a model of this formula as [¬(v1 ⊗ v2 ⊗
¬v3)]I1 = 1. Similarly, I2 with I2(v1) = 0.6, I2(v2) = 0.7
and I1(v3) = 0.2 is a model too because [¬(v1 ⊗ v2 ⊗
¬v3)]I2 = 0.9. Even though the formula is not perfectly
satisfied under interpretation I2, the degree of satisfaction
is still high enough to meet the lower bound l = 0.5. The
existence of the models I1 and I2 show that formula (1) is
satisfiable. Solving SAT∞ amounts to finding a model for the
set of formulas given, or deciding that there is no interpretation
that satisfies all formulas and that the set is UNSAT∞.

III. EVOLUTION STRATEGIES

Evolution strategies (ES) [13], [14] are continuous opti-
mization techniques belonging to the class of evolutionary
computation. They are algorithms that optimize an objective
function, or fitness function, by iteratively applying the princi-
ples of selection, mutation and recombination to a population
of candidate solutions. One candidate solution is an assignment
of the problem’s variables, i.e. the input of the objective
function. A candidate solution is called an individual and the
population of one iteration is a generation.

Each generation, a number of individuals is selected from
the population based on their relative fitness, as given by the
objective function. Most often, this is the µ best candidate
solutions. These selected individuals then serve as the parents
for the next generation; the information contained in these
individuals is used to generate new solutions. Generally, some
parents are recombined into new solutions, similar to sexual
reproduction, either by averaging their genes (intermediate
recombination) or taking different genes from different parents
(discrete recombination). These new solutions or offspring
are then mutated to introduce variation into the population.
Mutation is achieved by adding a random value from a normal
distribution to each gene.

An important aspect of modern ES is the concept of self-
adaptation, which allows the algorithm’s parameters to co-
evolve with the population. In the state-of-the-art CMA-ES
(Covariance Matrix Adaptation-Evolution Strategy) [15], the
full covariance matrix of the mutation distribution is adapted
to fit to the contour lines of the function to be optimized.
As such, the probability of getting mutations that improve
an individual’s fitness is maximized. This algorithm has been
shown to perform very well on hard optimization problems, i.e.
non-separable, multi-modal functions [16], and will be used as
the basis for our SAT∞ solver. Before continuing, we briefly
outline how CMA-ES optimizes an objective function.

CMA-ES
CMA-ES generates λ new candidate solutions xi from a

multi-variate normal distribution with mean m and covariance
matrix C (mutation):

xi = m+ σyi, yi ∼ N (0, C), for i = 1, ..., λ (2)

with σ the stepsize, controlling the strength of the mutation.
The mean and covariance matrix are adapted during op-

timization to perform intelligent exploration of the solution
space. The mean is updated every generation by calculating
a weighted average (recombination) of the µ best solutions
(selection) in the current population:

m←
µ∑

i=1

wixi:λ (3)

In this formula, xi:λ indicates the i’th best solution in
the population of size λ, and wi is a weight assigned to
that solution. A reasonable weight assignment satisfies the
following equation [15]:

1∑µ
i=1 w

2
i

≈ λ

4
(4)

The new distribution mean maximizes the log-likelihood of
successful solutions reoccurring, independently of the given
covariance matrix.

The covariance matrix of the distribution used to generate
new solutions is updated incrementally, based on the accumu-
lated mean shifts of previous search steps (pc), i.e. the general
direction the mean has moved over consecutive steps, and the
variation in the µ best new candidate solutions:

C(g+1) ← (1−c1−cµ)C(g)+c1pcp
T
c +cµ

µ∑

i=1

wiyi:λy
T
i:λ (5)

with c1 and cµ controlling the contribution of the various
terms to the new covariance matrix (c1 + cµ ≤ 1).

Essentially, the covariance matrix is adapted to maximize
the likelihood of sampling better solutions, given the objective
function. Only by using a full covariance matrix can this
be achieved, as demonstrated in the rightmost distribution in
Figure 1. The incorporation of the evolution path pc allows the
algorithm to move much faster in directions deemed favourable
in previous iterations.

78 N. Hansen

N
(
0, σ2I

)
N

(
0,D2

)
N (0,C)

Fig. 1. Six ellipsoids, depicting one-σ lines of equal density of six different normal distrib-
utions, where σ ∈ IR+, D is a diagonal matrix, and C is a positive definite full covariance
matrix. Thin lines depict exemplary objective function contour lines

where “∼” denotes equality in distribution and I denotes the identity matrix. If D =
σI, where σ ∈ IR+, C = σ2I and the ellipsoid is isotropic (Fig. 1, left). If B = I,
the ellipsoid is axis parallel oriented (middle). In the coordinate system given by B,
the distribution N (0,C) is uncorrelated.

Objective

The objective of covariance matrix adaptation is, loosely speaking, to fit the search
distribution to the contour lines of the objective function f to be minimized. In Fig. 1
the solid-line distribution in the right figure follows the objective function contour
most suitably, and it is easy to foresee that it will help to approach the optimum the
most. On convex-quadratic objective functions, setting the covariance matrix of the
search distribution to the inverse Hessian matrix is equivalent to rescaling the ellip-
soid function into a spherical one. We assume that the optimal covariance matrix
equals the inverse Hessian matrix, up to a constant factor.3 Consequently, the adapta-
tion mechanism should aim to approximate the inverse Hessian matrix. Choosing a
covariance matrix or choosing a respective affine linear transformation of the search
space is equivalent [7].

Basic Equation

In the CMA evolution strategy, a population of new search points is generated by
sampling a multi-variate normal distribution. The basic equation for sampling the
search points, for generation number g = 0, 1, 2, . . . , reads4

x
(g+1)
k ∼ N

(
m(g),

(
σ(g)

)2

C(g)

)
for k = 1, . . . ,λ (2)

3 Even though there is good intuition and strong empirical evidence for this statement, a
rigorous proof is missing.

4 Framed equations belong to the final algorithm of a CMA evolution strategy.

Fig. 1. Six ellipsoids, depicting one-σ lines of equal density of different
normal distributions, where σ ∈ R+, D is a diagonal matrix, and C is a
positive definite full covariance matrix. Thin lines depict exemplary objective
function contour lines. Figure taken from [15]. The full covariance matrix is
clearly best suited at matching the natural gradient of the objective function.

IV. OPTIMIZING SAT∞

As we will investigate an optimization approach to solving
satisfiability in fuzzy logics, we need to reformulate SAT∞
instances as optimization problems, i.e. defining a function
over the solution space such that optimizing this function
corresponds to solving the SAT∞ instance. A SAT∞ problem
consists of a set Θ of fuzzy formulas αi, each of which must be
satisfied to a certain degree, as defined by an upper and lower
bound per formula (the upper bound is usually set to 1). Given
these n formulas αi, bounds (ui, li), and an interpretation I,
we define the objective function f as follows:

f(I) =

∑n
i fI(αi)

n
(6)

and, for 1 ≤ i ≤ n,

fI(αi) =

1 if li ≤ [αi]I ≤ ui
[αi]I
li

if [αi]I < li
1−[αi]I
1−ui

if [αi]I > ui

(7)

with [αi]I representing the degree of satisfaction of formula
αi under interpretation I. Each fi is a trapezoid function, with
a plateau of value 1 when formula αi’s degree of satisfaction
lies between the given bounds, and a slope leading to the
plateau when the satisfaction lies outside these bounds, as
visualised in Figure 2.

This function is formulated such that the global maximum
will always have a function value 1 if the SAT∞ instance is
satisfiable. In that case, every global maximum corresponds to
a model of the problem. Given an algorithm of which we can
prove convergence to the global maximum on this function,
we have a complete SAT∞ solver. As we can not provide such
an algorithm, we are left with an incomplete solver, being able
to decide SAT∞ sometimes, but never UNSAT∞2.

Note that since CMA-ES is a minimization technique, we
must negate our objective function to place the problem’s
solutions in the global minima: f ′(x) = −f(x).

2CMA-ES converges to the global optimum on a large class of functions
as shown empirically but not proven mathematically.

0 l u 1

1

[αi]I

f I(
α
i)

Fig. 2. fI(αi) for a formula αi with lower bound l, upper bound u and
degree of satisfaction [αi]I .

V. RESULTS

In this section, we compare our solver with the constraint
satisfaction approach described by Schockaert et al. in [11]3

on the benchmark instances used in that paper. The CSP solver
used is called Minion4 and was also used in the original paper.
We start by providing a brief outline of the method from
[11] in Section V-A. Next, in Section V-B, we describe the
benchmark instances on which the experiments are performed,
and finally we present the results in Section V-C.

A. Constraint satisfaction-based SAT∞ Solver
The reasoning behind the constraint satisfaction approach

proposed by Schockaert et al. in [11] is based on two facts:
1) that in infinite-valued Łukasiewicz logic, L∞, any sat-

isfiable set of formulas Θ is also satisfiable in some
finite-valued logic Ld, with d ∈ N truth degrees [17],
and,

2) that in a propositional finite-valued logic, every sat-
isfiability problem can be translated into a constraint
satisfaction problem (CSP) [11].

Their proposed solver follows the following procedure:
1) Assume the knowledge of the set Tk =

{
0, 1k ,

2
k , ...,

k−1
k , 1

}
from which the constants, including the bounds,

in the SAT∞ problem are drawn.
2) Reduce the problem to a finite-valued logic Lk with truth

degrees Tk.
3) Translate the satisfiability problem in that finite-valued

logic into a CSP.
4) If the CSP can be solved, the problem is satisfiable,

otherwise, retry in L2k, L3k, etc., gradually refining the
truth values.

B. Problem instances
The problem instances considered in [11] are randomly gen-

erated using a recursive procedure form(p), which generates
a formula in Łukasiewicz logic with a fixed number of variable
occurrences. The base case, i.e. one variable in a formula, is
as follows:

form(1) =

vi 50% chance

¬vi 50% chance
(8)

3An implementation is available online: http://www.cwi.ugent.be/software/
FuzzySAT.tar.gz

4http://minion.sourceforge.net/

vi is a randomly chosen variable from a predefined set of
variables V = {v1, v2, ..., vm}. The general case, for p > 1,
is:

form(p) =

form(p1)⊗ form(p2) 50% chance

¬(form(p1)⊗ form(p2)) 50% chance
(9)

with p1 a random integer between 1 and p − 1, and p2 =
p− p1.

Note that in Łukasiewicz logic similar dependencies hold
between connectives as in classical logic, e.g. α ⊕ β =
¬(¬α ⊗ ¬β) and α → β = ¬α ⊕ β. Still, as explained in
[11], the way of generating test instances for a SAT∞ solver
as described above is somewhat different from what is usually
done in the setting of classical SAT. This is due to the fact
that not all formulas in Łukasiewicz logic can be converted to
conjunctive-normal form, and that, when restricted to formulas
in conjunctive-normal form (in the sense that only lower
bounds are used, formulas are composed of conjunctions and
negations, and all negations occur immediately in front of
atoms), the satisfiability problem in Łukasiewicz logic can be
reduced to linear programming, and can thus be decided in
polynomial time. Hence, to generate interesting test problems,
it is crucial to consider formulas which are not in conjunctive-
normal form.

To generate bounds for a formula α in a way that creates
challenging problems, Schockaert et al. propose the following:
• Randomly choose two interpretations I1, I2.
• Generate n formulas α according to the previously out-

lined method.
• Let λ1 be the largest value from T4 = {0, 0.25, 0.5,

0.75, 1} smaller than [α]I1 .
• Let λ2 be the smallest value from T4 larger than [α]I2 .
• With probability 0.5, add α ≥ λ1 to the set of formulas,

otherwise add α ≥ λ2.
The set of benchmark problems used in [11] was generated

using this method, with the additional constraint that any
variable can occur at most once in every formula. Each
problem instance consists of 100 formulas (n = 100), with
five variable occurrences per formula (p = 5). Sets of 10, 20,
30 and 40 variables were used, and for each set 50 problem
instances were generated.

C. Experiments

Figure 3 shows the results of Minion and CMA-ES solving
these benchmark problems. Instances are grouped by the
magnitude of runtime (ms) needed to solve them (from bottom
to top: 102, 103, 104, 105, timeout (undecided)). Timeout was
set to 150000 ms, and results for CMA-ES were averaged
over 10 runs, to account for its inherent stochasticity. As
CMA-ES is virtually parameter-free, we only needed to choose
population size λ and the number of individuals µ selected
for recombination. We settled on λ = 10 and µ = 1 as
these generally yielded the best results. We can see that our
method performs on par with Minion in terms of the number

10 20 30 40
0

5

10

15

20

25

30

35

40

45

50

variables

In
st

an
ce

s
so

lv
ed

102 ms
103 ms
104 ms
105 ms
Undecided

Fig. 3. Results on benchmark problems from [11]. The left bars represent
results from Minion, right bars are CMA-ES results. Both methods perform
on par in terms of the number of instances they can solve, but Minion does
this generally faster than our method.

10 20 30 40
0

5

10

15

20

25

30

35

40

45

50

variables

In
st

an
ce

s
so

lv
ed

102 ms
103 ms
104 ms
105 ms
Undecided

Fig. 4. Results on harder problems with a higher granularity in the bounds for
formulas. The left bars represent results from Minion, right bars are CMA-
ES results. Our approach is able to solve a significantly higher amount of
problems than Minion before timeout.

of instances they can solve, but Minion does this generally
faster than our method.

However, the way these problem instances are constructed
hide a drawback of the CSP approach, which is the discretiza-
tion of a continuous problem. Namely, the upper and lower
bounds generated for formulas are drawn from T4, which gives
a low granularity. To test the influence the choice of this set
has on performance, we generated a new set of benchmark
problems using the same method, only now drawing bounds
from the set T100 = {0, 0.01, 0.02, ..., 0.99, 1}.

The same experiment is performed on this new set of
problem instances and yields different results, see Figure 4.
It is clear that the CSP approach has difficulties with such
fine-grained constants in the formulas, while our approach’s
performance does not significantly degrade, as it truly models
the problem in a continuous domain. The results of both exper-

TABLE I
MINION VS CMA-ES

Instances solved by ... Benchmark [11] New benchmark

Minion 128 42

CMA-ES 125 118

Combined 134 119

Minion faster 89 (15x) 31 (29x)

CMA-ES faster 30 (3x) 10 (2x)

iments are summarized in Table I. Note that combined, these
approaches can solve more instances than each individually,
i.e. some instances that are solvable by Minion are not by
CMA-ES, and vice-versa.

VI. DISCUSSION AND FUTURE WORK

Overall, the CSP approach does not handle fine granularity
of constants in the problem well, as it relies on an iteratively
refining discretization of a continuous problem, which can
lead to an exponential increase in complexity. Our approach
does not suffer from this problem. On the other hand, of
the problems that both methods can solve, three quarters are
solved significantly faster (15x - 29x) by Minion than by
CMA-ES, while one quarter of those problems is solved only
slightly faster (3x - 2x) by our solver. This, and the fact
that some instances can only be solved by either one of the
two methods, shows that both methods are valuable and can
contribute to a portfolio of SAT∞ solvers. Note that some of
the instances that could not be solved within the time limit by
either method are potentially unsatisfiable, and thus can not
be decided by these incomplete solvers.

Although our solver was only applied to Łukasiewicz logic
in these experiments, it is in essence independent of the
underlying logic and its operators. The only requirement for
this approach is that a degree of satisfaction can be calculated
for a formula and then compared to given bounds for incor-
poration into an objective function. The CSP approach is less
independent of the logic used, as it requires specifications for
the translation of formulas and operators in that logic to CSP.

As for future work on this solver, we are currently in-
vestigating two ways to improve its performance. First, we
noticed that the optimal CMA-ES population size is not the
same for all SAT∞ instances. Some instances that could not
be solved with the population size used in the experiments in
this paper can easily be solved with a larger population size.
Conversely, some instances that were quickly solved with a
small population size could not be solved at all with a larger
population. Thus, we intend to investigate extending our solver
with a restart strategy with increasing population size [18].
This extension allows the CMA-ES algorithm to adapt its
population size to best solve a problem instance.

Secondly, we are investigating how we can detect and
exploit the underlying structure of a SAT∞ instance to improve
the performance of CMA-ES. We intend to introduce discrete
recombination in CMA-ES, so that when several populations
are solving a problem in parallel, we can help them escape

local optima by allowing them to exchange and recombine
optimized problem substructures.

VII. CONCLUSION

Satisfiability solving in fuzzy logics has received little atten-
tion compared to its counterpart in classical logics. Therefore,
we introduced a novel approach to such a solver in this
paper. In contrast to previous more analytical approaches,
this incomplete solver models the satisfiability problem as an
optimization problem in a continuous domain, using CMA-ES,
the state-of-the-art evolution strategy algorithm, as its solution
technique. We have empirically demonstrated that this new
approach significantly outperforms the current state-of-the-art
solver on certain classes of hard problems. Our solver is also
not limited to Łukasiewicz logic, to which it was applied in
this paper, but can be used to solve satisfiability in a wide
range of fuzzy logics.

ACKNOWLEDGMENT

This work was partially funded by a joint VUB-UGent
Research Foundation-Flanders (FWO) project.

REFERENCES

[1] L. Zhang and S. Malik, “The quest for efficient boolean satisfiability
solvers,” in Computer Aided Verification, ser. Lecture Notes in
Computer Science, E. Brinksma and K. Larsen, Eds. Springer Berlin
/ Heidelberg, 2002, vol. 2404, pp. 641–653, 10.1007/3-540-45657-0 2.
[Online]. Available: http://dx.doi.org/10.1007/3-540-45657-0\ 2

[2] H. Kautz and B. Selman, “Planning as satisfiability,” in Proceedings of
the 10th European conference on Artificial intelligence, ser. ECAI ’92.
New York, NY, USA: John Wiley & Sons, Inc., 1992, pp. 359–363.
[Online]. Available: http://dl.acm.org/citation.cfm?id=145448.146725

[3] N. Tamura, A. Taga, S. Kitagawa, and M. Banbara, “Compiling
finite linear CSP into SAT,” in Principles and Practice of Constraint
Programming - CP 2006, ser. Lecture Notes in Computer Science,
F. Benhamou, Ed. Springer Berlin / Heidelberg, 2006, vol.
4204, pp. 590–603, 10.1007/11889205 42. [Online]. Available: http:
//dx.doi.org/10.1007/11889205\ 42

[4] U. Straccia and F. Bobillo, “Mixed integer programming, general
concept inclusions and fuzzy description logics,” Mathware & Soft
Computing, 2007.

[5] S. Schockaert, M. De Cock, and E. E. Kerre, “Spatial reasoning
in a fuzzy region connection calculus,” Artificial Intelligence,
vol. 173, no. 2, pp. 258 – 298, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S000437020800146X

[6] J. Janssen, S. Schockaert, D. Vermeir, and M. De Cock, “Reducing fuzzy
answer set programming to model finding in fuzzy logics,” CoRR, vol.
abs/1104.5133, 2011.

[7] T. Lukasiewicz and U. Straccia, “Tightly integrated fuzzy description
logic programs under the answer set semantics for the semantic web,”
in Proceedings of the 1st international conference on Web reasoning
and rule systems, ser. RR’07. Berlin, Heidelberg: Springer-Verlag,
2007, pp. 289–298. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1768725.1768750

[8] N. Madrid and M. Ojeda-Aciego, “Measuring inconsistency in fuzzy
answer set semantics,” in Transactions on Fuzzy Systems, vol. 19, 2011,
pp. 605–622.

[9] D. Van Nieuwenborgh, M. De Cock, and D. Vermeir, “An introduction
to fuzzy answer set programming,” Annals of Mathematics and Artificial
Intelligence, vol. 50, pp. 363–388, 2007, 10.1007/s10472-007-9080-3.
[Online]. Available: http://dx.doi.org/10.1007/s10472-007-9080-3

[10] R. Hähnle, “Many-valued logic and mixed integer programming,”
Annals of Mathematics and Artificial Intelligence, vol. 12, pp.
231–263, 1994, 10.1007/BF01530787. [Online]. Available: http:
//dx.doi.org/10.1007/BF01530787

[11] S. Schockaert, J. Janssen, and D. Vermeir, “Satisfiability checking
in Łukasiewicz logic as finite constraint satisfaction,” Journal of
Automated Reasoning, 2012. [Online]. Available: http://dx.doi.org/10.
1007/s10817-011-9227-0

[12] P. Hájek, Metamathematics of Fuzzy Logic. Springer, 1998.
[13] T. Bäck, F. Hoffmeister, and H.-P. Schwefel, “A survey of evolution

strategies,” in Proceedings of the Fourth International Conference on
Genetic Algorithms. Morgan Kaufmann, 1991, pp. 2–9.

[14] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies – a comprehen-
sive introduction,” Natural Computing, vol. 1, pp. 3–52, 2002.

[15] N. Hansen, “The CMA evolution strategy: a comparing review,” in
Towards a new evolutionary computation. Advances on estimation of
distribution algorithms, J. Lozano, P. Larranaga, I. Inza, and E. Ben-
goetxea, Eds. Springer, 2006, pp. 75–102.

[16] N. Hansen and S. Kern, “Evaluating the cma evolution strategy on
multimodal test functions,” in Parallel Problem Solving from Nature -
PPSN VIII, ser. Lecture Notes in Computer Science, X. Yao, E. Burke,
J. Lozano, J. Smith, J. Merelo-Guervós, J. Bullinaria, J. Rowe, P. Tino,
A. Kabán, and H.-P. Schwefel, Eds. Springer Berlin / Heidelberg, 2004,
vol. 3242, pp. 282–291.

[17] D. Mundici, “Satisfiability in many-valued sentential logic is np-
complete,” Theor. Comput. Sci., vol. 52, pp. 145–153, May 1987.
[Online]. Available: http://dx.doi.org/10.1016/0304-3975(87)90083-1

[18] A. Auger and N. Hansen, “A restart CMA evolution strategy with
increasing population size,” in The 2005 IEEE International Congress
on Evolutionary Computation (CEC’05), B. McKay et al., Eds., vol. 2,
2005, pp. 1769–1776.

