
Meta-Layer Problem Solving for
Computational Construction Grammar

Paul Van Eecke
Sony Computer Science Laboratory Paris

6, rue Amyot
75005 Paris, France

paul.vaneecke@sony.com

Katrien Beuls
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussels, Belgium

katrien@ai.vub.ac.be

Abstract

Bearing the word “fluid” in its name, Fluid Construction
Grammar (FCG) is known for its open-ended nature when
it comes to formalising linguistic knowledge in the form of
constructions. Yet, it is also flexible with respect to the pro-
cessing of input that cannot be handled in the standard way.
This paper presents a meta-layer architecture that is fully inte-
grated into the FCG language processing framework, as well
as a number of powerful and general operators that can be
used within this architecture for on-the-fly problem solving
and learning of lexical and grammatical constructions.

Introduction
Although the bulk of language processing happens routinely
while we speak and listen, we sometimes need to deal with
unexpected input, such as new words popping up, known
words being used in different situations, or new grammati-
cal structures being introduced by combining previously ex-
isting structures in a novel way. In order to accommodate
the innovative and evolving nature of language, any com-
putational platform that aims to process everyday language
needs powerful mechanisms for handling these phenomena.

In this paper, we present a general meta-level architecture
that facilitates on-the-fly problem solving and learning of
constructions. The basic architecture consists of a routine-
layer for standard processing and a meta-layer for prob-
lem solving and learning. Furthermore, it provides mecha-
nisms that detect possible impasses during routine process-
ing (diagnostics), problem solving strategies that find so-
lutions to these impasses (repairs) and learning strategies
that consolidate these solutions for later reuse in standard
processing (consolidation strategies). The meta-level archi-
tecture is fully operational and integrated in the core of
the Fluid Construction Grammar framework (Steels 2011;
2016).

The paper is structured as follows. First, we will present
how constructional language processing can be approached
as a search problem and how this is reflected in Fluid Con-
struction Grammar’s routine layer. Then, we will describe in
more detail how the meta-layer architecture is implemented.
Third, a few didactic examples show the meta-layer at work

Copyright c⃝ 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and introduce a number of general and powerful diagnos-
tics, repairs and consolidation strategies. A review of related
literature concludes the paper.

A web demonstration containing more details about the
actual implementation of both the meta-layer and the exam-
ples discussed in this paper is available at http://www.fcg-
net.org/demos/meta-layer. We will refer to section X in the
web demonstration as ‘WD-X’ in this paper.

Language Processing as a Search Problem
Fluid Construction Grammar approaches language process-
ing as a search problem, a class of problems that has been
extensively studied in AI research (see for example Newell
and Simon 1972). The search problem for constructional
language processing can be analysed into the following three
components, as enumerated by Steels and Van Eecke (2017):
1. A problem state (FCG: transient structure), which rep-

resents the current state of knowledge that a speaker or
hearer has about an utterance that he is constructing (in
production) or analysing (in comprehension).

2. A goal that characterises a solution state (FCG: goal test),
e.g. criteria that define a successful interpretation of an
utterance.

3. Operators (FCG: constructions) that apply to an existing
problem state and create a new problem state that is closer
to a solution state.
The search process itself consists of finding a sequence

of constructions that expand the transient structure in subse-
quent steps from the initial state to a solution state. Transient
structures are represented as feature structures, containing
units, features and values, which can themselves be feature-
value pairs. The initial transient structure consists of an in-
put buffer that either contains a meaning representation that
the speaker wants to express (in production), or a segmented
utterance that the listener is trying to comprehend (in com-
prehension).

Just like transient structures, constructions take the form
of feature structures, although the latter are a little more
structured. Constructions consist of a comprehension lock,
a production lock and a contributor (see Figure 1). When a
construction tries to apply during comprehension, the fea-
tures of the comprehension lock are matched with the tran-
sient structure. If the match succeeds, the features of both

The AAAI 2017 Spring Symposium on
Computational Construction Grammar and Natural Language Understanding

Technical Report SS-17-02

258

the production lock and the contributor are merged into the
transient structure. In production, the same process happens,
but here the features of the production lock are matched and
those from the comprehension lock are merged.

contri
butor

production
lock

comprehen-
sion lock

contri
butor

production
lock

comprehen-
sion lock

Transient-
structuregiven

Transient-
structurenew

Match

Merge

Match

Merge

Production Comprehension

Transient-
structuregiven

Transient-
structurenew

Figure 1: Construction application happens by first matching
either the production lock (in production - left) or the com-
prehension lock (in comprehension - right) onto the given
transient structure. When matching succeeds, the features
from the other lock and the contributor are merged into
the new transient structure. Figure adapted from Steels and
Van Eecke (2017).

Through subsequent application, a number of construc-
tions expand the initial transient structure into a final tran-
sient structure. Typically, lexical or morphological construc-
tions will first try to carve out pieces of the ‘meaning’ or
‘form’ features of the input. Then, more abstract grammat-
ical constructions combine these units into larger networks.
After each construction application, goal tests are run to
check whether a transient structure qualifies as a potential
solution. If it does, processing stops and the comprehended
meaning representation (in comprehension) or produced ut-
terance (in production) is extracted from this final transient
structure. If it does not, processing continues and a next con-
struction from the construction inventory is tried. Common
goal tests are: no more applicable constructions (queue ex-
hausted), the resulting meaning network is fully integrated
(one chunk) or all strings from the input have been pro-
cessed.

Just like for any search problem, the order in which con-
structions are applied has a major influence on the efficiency
of the search. This optimization problem falls however out-
side the scope of this paper and for now, we will assume that
constructions apply in a random order and that we navigate
through the search space in a depth-first manner.

Routine Language Processing
Let us now have a look at a concrete example of routine
language processing in FCG, using the mechanisms de-
scribed above. Say, we want to comprehend the utterance
“the mouse”. When FCG is called, it creates an initial tran-
sient structure based on the input utterance. The initial tran-
sient structure contains two strings (“the” and “mouse”), as
well as a “meets” constraint, indicating that “the” immedi-
ately precedes “mouse” (see Figure 2).

Then, the search process starts and one by one, the com-
prehension locks of the different constructions (cxns for
short) of the construction inventory are matched against this
initial transient structure. At some point, the “mouse-cxn”

Figure 2: The initial transient structure for the utterance “the
mouse”.

(see Figure 3) is tried. Its comprehension lock contains a sin-
gle feature, that can indeed be matched1 with the initial tran-
sient structure. The construction can apply and all features
from the production lock and the contributor are merged into
the transient structure, as shown in Figure 4.

Figure 3: The construction for “mouse”, with its contributor
(left), production lock (right above) and comprehension lock
(right below).

Figure 4: The transient structure created by applying the
mouse-cxn in Figure 3 to the initial transient structure in
Figure 2.

The construction application process continues and re-
spectively the “the-cxn” and the “noun-phrase-cxn” apply.
Then, no more constructions can apply, which in this case
defines a successful goal-test result. The final transient struc-
ture is returned and its meaning predicates are extracted and
visualised as a semantic network. The complete construction
application process and the extracted meaning network are
shown in Figures 5 and 6 below.

1Matching is a form of unification and symbols preceded with
a ? are variables.

259

Figure 5: The construction application process for the utter-
ance “the mouse”.

Figure 6: The resulting semantic network extracted from the
final transient structure.

This example is shown in full detail in Section WD-1 of
the web demonstration that supports this paper.

Meta-layer Language Processing
The routine processing layer described in the previous sec-
tion is well suited for handling input that is entirely covered
by the grammar. In real-world use however, static models
will never achieve full coverage because of the dynamic and
evolving nature of language. Language users are creative
and innovative, the acoustical conditions may be subopti-
mal, or language users might just make downright errors. In
these cases, FCG’s routine layer will still process the input
as far as possible, which may be good enough for some pur-
poses, but additional mechanisms for problem solving and
learning of innovations are often desirable.

For this reason, we have integrated a meta-layer into the
FCG framework. The meta-layer architecture is based on di-
agnostics, repairs, and consolidation strategies. It provides
the necessary mechanisms to:

• detect problems during comprehension or production;

• temporarily stop the expansion of the transient structure
that is being built up;

• find a solution to the problem;

• resume processing at the present or an earlier stage;

• consolidate the solution for later reuse during routine pro-
cessing.

Diagnostics
Diagnostics are tests that inspect transient structures for ab-
normalities and potential problems. They are defined on
grammar-level and are run after each construction applica-
tion. If an abnormality is found, a diagnostic will create a
problem of a certain type (e.g. unknown word, agreement

mismatch) and trigger a jump to the meta-layer. Diagnos-
tics typically take the current transient structure as input, but
have access to all previous steps in the search process, as
well as to the construction inventory and to all constructions
that have been applied so far.

Repairs
Repairs are strategies to solve problems. They are spe-
cialised towards the specific (classes of) problems that diag-
nostics can trigger. Just like diagnostics, repairs have com-
plete access to the current and previous transient structures,
the previously applied constructions, and the complete con-
struction inventory. Based on the diagnosed problem, they
try to find a solution in the form of a fix. The type of the fix
and the way that the fix repairs the problem is open-ended.
Here, we will focus on a specific kind of fix, namely fixes
that are themselves constructions. Repairing the problem
consists then of making the appropriate fix-cxn and to ap-
ply this fix-cxn to the current transient structure. After this,
routine processing takes over again.

Consolidation
Diagnostics and repairs can handle language use that is not
covered by routine processing. Yet, it is also desirable to
learn from the problem solving process, such that similar
input can in the future be handled by routine processing and
will not lead to the creation of a problem anymore. In the
case that fixes are themselves constructions, the transfer of
the solution from the meta-layer to the routine layer is quite
straightforward. When a branch of the search tree leads to a
solution, the constructions that were created on the fly by a
repair can simply be added to the construction-inventory.

In many cases, it is necessary to find a good balance be-
tween the specificity and generality of a fix-cxn. If it is
too specific, it might only apply to exactly the same input,
whereas if it is too general, it might apply to cases it is not
appropriate for. In the next section, we will go into more de-
tail about techniques for finding this balance, especially the
anti-unification and pro-unification algorithms.

Figure 7 schematically shows how the meta-layer is im-
plemented in FCG. After node t+2, a problem is diagnosed
and the routine processing pipeline is briefly interrupted by
the repair process taking place. Then, routine processing
smoothly resumes and the fix is consolidated after a solu-
tion is found.

Diagnostics and Repairs at Work
The power of a meta-layer architecture lies of course in the
specific diagnostics, repairs and consolidation strategies that
are used. The meta-layer that we have integrated into FCG
is completely open-ended in this respect and provides the
full power of a programming language to implement any
functionality that is needed. In this section, we present a
number of diagnostics, repairs and consolidation strategies
that are now part of the FCG core. The first one shows how
new lexical constructions can be created on the fly, the sec-
ond one how new phrasal constructions can be induced from
co-referential relations, and the third one presents powerful

260

fix cxnaproblem

Transient-
structuret

Transient-
structuret+1

Transient-
structuret+2

Transient-
structuret+3

Transient-
structuret+n

repair
diagnose diagnose diagnose diagnose

Transient-
structuret+2'

diagnose

...

diagnose

cxnm

cxni cxnj cxnk cxnl cxnm cxnn cxno cxnp ... cxnz + fix-cxna cxn-inventory

cxnp cxnl

consolidation

Figure 7: Routine language processing is briefly interrupted when a problem is diagnosed at time step 2 in the processing
pipeline. After the repair has suggested a potential fix for the problem, routine processing is resumed.

algorithms for making constructions more general or more
specific.

Creating New Lexical Constructions
Sooner or later, any grammar that is used in a real-world set-
ting will need to deal with missing lexical constructions. In
comprehension, this problem occurs when the input utter-
ance contains a string that is not covered by any construc-
tion. In production, it occurs when no construction covers a
concept that needs to be expressed.

Diagnostic Diagnosing a missing lexical construction is
quite straightforward. In comprehension, a problem of the
type unknown-words is created when no more construc-
tions can apply and the root unit (initial input buffer) still
contains one or more strings. In production, a problem of the
type unknown-meaning-predicates is created when
no more constructions can apply, and the root unit still con-
tains one or more meaning predicates.

Repair A new lexical construction is created based on a
grammar-specific construction template. The template con-
tains the features that are common to the different lexical
constructions in the grammar. In comprehension, the string
can be filled in and a new meaning predicate is invented.
In production, the meaning predicate is filled in and a new
string is invented2. The values of the other features are either
inferred by external resources (such as morphology-based
taggers in the case of the syntactic category) or left under-
specified as free variables.

Consolidation The freshly created lexical constructions
can be added as such to the construction inventory. Typi-
cally, they will be added with a very low initial score that
will increase if the new construction is used multiple times in
successful interactions and gets therefore more entrenched.

Example Let us have a look at an example for produc-
tion, which can be explored in full detail as WD-2 in the
web demonstration. Imagine that an agent needs to ex-
press the conceptualised meaning shown in Figure 8. The
agent’s grammar contains the required lexical constructions

2In production, new strings can either be invented randomly, or
based on existing lexical constructions, potentially stretching their
semantics. In comprehension, meaning predicates can also be in-
vented randomly, or inferred from the world model and mapped to
an ontology.

for (unique ?x), (linguist ?x) and (deep-affection ?x ?y), but
contains no construction covering the predicate (book ?x). In
other words, the agent knows the concept of a book, needs
to communicate with another agent about a book, but has no
word for it.

Figure 8: The conceptualised meaning that needs to be ex-
pressed. The concept (book ?x) is unfortunately not covered
by the agent’s grammar.

When routine processing starts, the “likes-cxn”, “verb-
phrase-cxn”, “linguist-cxn” “the-cxn” (2 times) and “noun-
phrase-cxn” apply. The unknown-meaning-predicates diag-
nostic is run after each construction application. After the
application of the “noun-phrase-cxn”, no more constructions
are applicable, but the root still contains a meaning predi-
cate, so the diagnostic notifies a problem, as shown by the
orange node in Figure 9. Then, FCG jumps to its meta-layer
and creates on the fly a new lexical construction, as shown
by the yellow node in Figure 9.

The freshly created lexical construction is shown in more
detail in Figure 10. We can see that the string that was in-
vented for this construction is “ropapa” and that the lex-
class and sem-class are left underspecified (and will there-
fore match any symbol).

Once the book-cxn has been applied, routine process-
ing can resume, as indicated by the green node for “noun-
phrase-cxn” in Figure 9. Finally, After the “noun-phrase-
cxn” and the “transitive-clause-cxn” have applied, we end
up in a solution state. From this final transient structure, the
utterance “the linguist likes the ropapa” can be extracted.
It will now be left to the cognitive capacities of the other
agent to infer the meaning of ropapa from the situation and

261

Figure 9: Excerpt from the construction application pro-
cess triggering a diagnostic (orange node) and repair (yellow
node) for adding a new lexical construction.

Figure 10: Lexical construction created for the concept
(book ?x). The string that was assigned to this construction
happens to be “ropapa” and the lex-class and sem-class are
left underspecified.

to eventually create a new lexical construction himself. This
way, the word “ropapa” with the meaning of (book ?x) might
spread in the population of agents.

Inducing New Phrasal Constructions
An important function of grammar is to narrow down refer-
ential ambiguity by encoding co-reference relations explic-
itly. The formal means by which these relations are encoded
can vary, but many languages employ word order and/or
markers for this purpose. In this example, we will show
how meta-layer diagnostics and repairs can be used to learn
phrasal constructions that integrate new units into existing
phrases.

Diagnostic Missing phrasal constructions are diagnosed
when (i) no more constructions are applicable, (ii) all input
strings have been covered by lexical constructions, (iii) the
semantic network extracted from the final transient structure
is not fully connected (i.e. it contains more than one chunk),
and (iv) no existing constructions can easily be generalised
to apply to the transient structure (see next section).

Repair A new phrasal construction is created. This con-
struction makes the referents of two units equal and captures
the observed word order.

Consolidation The phrasal-cxn is too general to be added
as such to the cxn-inventory, as it would apply in cases

for which it is not appropriate. However, the pro-unification
technique that will be explained in the next section can be
used to constrain the new phrasal construction towards the
observed case before adding it to the cxn-inventory.

Example In the following example (see WD-3), the ut-
terance that needs to be comprehended is “the green
mouse”. The grammar contains lexical constructions for
“the”, “green” and “mouse”, as well as a “noun-phrase-cxn”
that combines an article and a noun into a noun phrase. The
grammar does not contain any constructions that can inte-
grate an adjective into a noun phrase.

Routine processing applies the three lexical constructions
and the noun-phrase-cxn. At this moment in processing,
the meaning network in the transient structure is uncon-
nected (as shown in Figure 11) and the diagnostic for miss-
ing phrasal constructions creates a new problem, triggering
a jump to the meta-layer.

Figure 11: Unconnected semantic network.

On the meta-layer level, the repair makes a new phrasal
construction as shown in Figure 12. The construction spec-
ifies that the lexical unit, in this case the adjective “green”,
should have the same referent as the phrase it will be inte-
grated in, in this case the noun phrase. This is ensured by
making the value of the ‘args’ feature in both units equal
(args: [?ref]). Concerning the form, the construction speci-
fies that the lexical unit is left-adjacent to the phrasal head
within the scope of the phrase.

Figure 12: Phrasal construction that was created by the re-
pair to integrate “green” into the noun phrase.

By applying the new phrasal construction to the transient
structure, the unit for “green” is integrated into the noun
phrase. The problem state now qualifies as a solution, and
the resulting meaning representation is a single, fully con-
nected network. The problem states in which the diagnostic

262

triggered and in which the repair-cxn was created and ap-
plied are shown in Figure 13 below.

Figure 13: The nodes (problem states) in which the missing
phrasal cxn diagnostic triggered (orange) en in which the
phrasal-cxn applied (dark green).

Generalising and Specialising Constructions using
Anti- and Pro-unification
Innovation in language often relies on novel constructions
that share most of their properties with already existing con-
structions. These innovations pose a challenge to computa-
tional systems, as the small number of features that differen-
tiate the novel constructions from existing ones block their
application completely. This is for example the case for co-
ercions (different syntactic or semantic category), the emer-
gence of new word orders (different word order features), or
the raise and decline of agreement systems (different equal-
ity constraints). In order to process these phenomena, it is
useful to be able to temporarily relax the conflicting features
of a construction, while still matching and merging the bulk
of the features when the construction applies. At the same
time, the features and values that are more specific in the
novel construction than in the general one should be learned.
This avoids storing constructions that are too general and
therefore apply too widely.

Steels and Van Eecke (2017) present two general and
powerful operators that allow to flexibly match construc-
tions and learn from their application. The first operator,
called anti-unification, finds the least general generalisation
of a construction that matches a given transient structure.
In other terms, the anti-unification of a construction and a
transient structure always returns a new construction that
matches that transient structure. The features of the original
construction that blocked the matching process are relaxed
through generalization. The algorithm also returns a cost, in-
dicating the distance between the original construction and
the anti-unified construction. When the original construc-
tion already matches the transient structure, the same con-
struction is returned with cost 0. When it does not match, a
matching, generalised construction is returned with a cost >
0, depending on the number, depth, and kind of features that
needed to be relaxed.

While anti-unification generalises a construction to match
a transient structure, the second operator, called pro-
unification, specialises a construction towards a transient
structure. There are many options in the algorithm, but one

of the basic functions is to bind different variables in the con-
struction that are bound to the same values in the transient
structure to each other. Pro-unification is used immediately
after anti-unification before a new construction is stored.

Given a new observation (transient structure) and a con-
struction, anti-unification returns a generalised construc-
tion that matches the observation, while pro-unification spe-
cialises the generalised construction towards the observa-
tion. The pro-unified construction strikes a good generality-
specificity balance, such that it can be added to the con-
struction inventory and become part of the grammar. The
generality-specificity and matching relations between con-
structions and transient structures involved in anti- and pro-
unification are schematically sketched in Figure 14.

Figure 14: A schematic representation of anti-unification
and pro-unification of a construction with a transient struc-
ture. Figure adapted from Steels and Van Eecke (2017).

Diagnostic A problem of the type
matching-conflict is created when no more
constructions can apply and the meaning network extracted
from the final transient structure is not fully connected, i.e.
consists of more than one chunk.

Repair The different grammatical constructions of the
grammar are anti-unified with the final transient structure
and the cost is recorded. Then, the anti-unified construc-
tion with the lowest cost is applied to the transient struc-
ture and processing in the routine layer can continue. If no
anti-unified construction can be found with a cost under a
grammar-specific threshold, the repair signals that it cannot
be used for this problem.

Consolidation The anti-unified construction is pro-unified
with the resulting transient structure. The pro-unified con-
struction is then added to the construction inventory.

Example We will now show an example of how anti-
unification and pro-unification are integrated in the meta-
layer framework (see WD-4). The example shows how the
word order constraints in a noun phrase can be relaxed to

263

process a new observation and how the observed word order
can be captured in a new construction.

For the sake of clarity, let’s assume that the grammar of a
French-learning agent consists only of lexical constructions
and a noun phrase construction that groups a determiner, an
adjective and a noun (in that order) into a noun phrase. This
means that the agent can comprehend and produce utter-
ances such as “le formidable dı̂ner” (‘the splendid dinner’).
Now, the agent observes an utterance “le dı̂ner formidable”
(‘the dinner splendid’) in which the adjective is placed af-
ter the noun. This word order is also correct in French, so
we would like the agent to learn a new construction cover-
ing noun phrases with adjectives in postposition. Let us first
have a look at the transient structure after the application of
the lexical constructions, as shown in Figure 15. Units of
which the features are not relevant to this example are col-
lapsed in the image and co-reference relations are indicated
in colour.

Figure 15: The transient structure after applying the lexical
constructions to “un dı̂ner formidable”.

We can see that the observed word order of the ut-
terance is present in the transient structure in the form
of two ‘meets’ constraints, indicating that ‘un’ immedi-
ately precedes ‘dı̂ner’ and ‘dı̂ner’ immediately precedes
‘formidable’. When we have a look at the agent’s noun-
phrase-cxn, which is shown in Figure 16, we can see that the
comprehension lock stipulates that the article should meet
the adjective and that the adjective should meet the noun.
The construction does not match the transient structure and
can therefore not apply.

At this point, a problem of the type
matching-conflict is created by the diagnostic.
FCG jumps to its meta-layer and the different constructions
of the inventory are anti-unified with the transient structure.
The NP-cxn has the lowest anti-unification cost. The
resulting anti-unified construction is shown in Figure 17.
We can see that the conflicts in the ‘meets’ constraints are
solved through generalisation. The meets constraints now
contain unbound variables (?adj-468 and ?noun-412 are
not linked to units anymore). The anti-unified NP-cxn can
now apply to the transient structure and lead to a successful
result.

The construction made by anti-unifying the NP-cxn with
the transient structure solves the comprehension problem for

Figure 16: The NP-cxn from the cxn-inventory of the
French-learning agent.

Figure 17: The result of anti-unifying the NP-cxn from Fig-
ure 16 with the transient structure from Figure 15.

the observation at hand. It is however too general to add to
the construction inventory because its word order features
are not ‘meaningful’ anymore and would accept any word
order. We want to specialise this construction towards the
observation, by capturing the observed word order.

In order to achieve this, we will now pro-unify the con-
struction with the transient structure. The pro-unification al-
gorithm searches for variables in the construction that are
bound to the same value in the transient structure. When uni-
fying the anti-unified construction in Figure 17 and the tran-
sient structure in Figure 15, we see that the variables ?adj-
468 and ?noun-396 from the construction will both be bound
to dı̂ner-15 in the transient structure. Likewise, ?noun-412
and ?adj-452 will be both bound to formidable-9. For both
cases, the pro-unification algorithm will replace one of the
variables from the construction by the other one. This cap-
tures the observed word order in the construction. The names
of the variables ?adj-468 and ?noun-412 can be confusing,
because they are indeed never bound to an adjective and
noun. They were however just free variables. Their names
were chosen by the anti-unification algorithm based on the
variable names in the original construction, but are as mean-
ingless as ?x ?y, or ?some-variable-name.

The construction that results from the pro-unification pro-
cess is shown in Figure 18. We can see that it now states that
the noun should immediately precede the adjective and that
the article should immediately precede the noun. This cap-
tures indeed the word order of the observed example. Dur-

264

ing consolidation, the construction will be added to the con-
struction inventory and will in the future cover any new noun
phrases with this word order in routine processing.

Figure 18: The result of pro-unifying the anti-unified NP-
cxn from Figure 17 with the transient structure from Figure
15. The resulting pro-unified construction allows adjectives
to occur in postnominal position.

Related Work
The meta-layer already has a long history in evolution-
ary linguistics experiments, in which robust communication
plays an important role as agents create new linguistic con-
ventions from scratch. A previous article on the topic de-
scribed three different levels of applications that are relevant
within the language game approach: the FCG-level (cover-
ing linguistic processing itself), the process-level (concern-
ing cognitive processes in the semiotic cycle) and the agent-
level (dealing with agent behaviours and turn-taking) (Beuls,
Van Trijp, and Wellens 2012). Yet, to use the meta-layer ar-
chitecture in an FCG grammar, the grammar engineer had
to extend the FCG system with his or her own classes and
search heuristics. Our current contribution makes an effort
to integrate the meta-layer inside regular FCG engineering
so that diagnostics and repairs can easily become part of any
FCG grammar. Other examples of FCG diagnostics and re-
pairs that were implemented in earlier versions of the for-
malism are described by Steels and van Trijp (2011) and van
Trijp (2012).

Cognitive architectures such as ACT-R (Anderson 2007)
and Soar (Laird, Newell, and Rosenbloom 1987; Laird 2012)
also support the idea of a meta-layer, in the sense of incor-
porating two processing cycles: A routine layer that is con-
trolled by knowledge retrieved from procedural memory and
a meta-layer that modulates this basic processing layer with
data from declarative memory. Systems such as NL-Soar
applied the Soar theory to sentence processing (Lehman,
Lewis, and Newell 1991). A similar system for ACT-R has
been presented by Lewis and Vasishth (2005). Paying a lot
of attention to the cognitive relevance of their models, ACT-
R architectures try to adhere to “well established cogni-
tive constraints” in human language understanding (Ball et
al. 2010), something which plays a more peripheral role in
Fluid Construction Grammar.

Conclusion
Agent-based cognitive systems commonly employ a meta-
layer architecture for enhancing their robustness. The rou-
tine layer then serves routine processing and the meta-layer
is used for on-the-fly problem solving. In this paper, we have
described the integration of a meta-layer architecture into
Fluid Construction Grammar. It is based on diagnostics that
detect problems during routine processing, repairs that find
solutions to these problems, and consolidation strategies that
learn these solutions for later reuse. Besides the architecture,
we have presented general and powerful operators that facil-
itate repair and consolidation in constructional language pro-
cessing. The meta-layer and these operators make language
processing more robust against erroneous input and can ac-
commodate the constant evolution of language by introduc-
ing necessary innovations or by learning from the innovative
language use of others.

References
Anderson, J. R. 2007. How can the human mind occur in
the physical universe? New York: Oxford University Press.
Ball, J.; Freiman, M.; Rodgers, S.; and Myers, C. 2010.
Toward a functional model of human language processing.
In Proceedings of the 32nd Annual Meeting of the Cognitive
Science Society.
Beuls, K.; Van Trijp, R.; and Wellens, P. 2012. Diagnostics
and repairs in Fluid Construction Grammar. In Steels, L.,
ed., Language Grounding in Robots. Berlin: Springer. 215–
234.
Laird, J. E.; Newell, A.; and Rosenbloom, P. S. 1987. Soar:
An architecture for general intelligence. Artificial intelli-
gence 33(1):1–64.
Laird, J. E. 2012. The Soar cognitive architecture. MIT
Press.
Lehman, J. F.; Lewis, R. L.; and Newell, A. 1991. Integrat-
ing knowledge sources in language comprehension. In Pro-
ceedings of the Thirteenth Annual Conference of the Cogni-
tive Science Society, 461–466.
Lewis, R. L., and Vasishth, S. 2005. An activation-based
model of sentence processing as skilled memory retrieval.
Cognitive science 29(3):375–419.
Newell, A., and Simon, H. A. 1972. Human problem solv-
ing, volume 104. Prentice-Hall Englewood Cliffs, NJ.
Steels, L., and Van Eecke, P. 2017. Insight grammar learning
using pro- and anti-unification. forthcoming.
Steels, L., and van Trijp, R. 2011. How to make construction
grammars fluid and robust. In Steels, L., ed., Design patterns
in fluid construction grammar. John Benjamins. 301–330.
Steels, L. 2011. Design patterns in fluid construction gram-
mar, volume 11. John Benjamins Publishing.
Steels, L. 2016. Basics of fluid construction grammar. Un-
der Review.
van Trijp, R. 2012. A reflective architecture for robust lan-
guage processing and learning. In Steels, L., and Hild, M.,
eds., Computational issues in Fluid Construction Grammar.
Springer. 51–74.

265

