
REINFORCEMENT LEARNING
Single-state RL

1

COORDINATES
• Prof. Dr. Yann-Michaël De Hauwere
• Office: VUB - Campus Etterbeek, Building G, 10th floor,

Room 10G720
• email: ydehauwe@vub.ac.be
• http://ai.vub.ac.be

2

mailto:ydehauwe@vub.ac.be
http://ai.vub.ac.be

SCHEDULE

3

Date
(thursdays)

Description

18/09/2014 No course this day

25/09/2014 Game theory basics

2/10/2014 Mixed strategies and Nash algorithms

9/10/2014 Extensive form games and their equilibria

16/10/2014 Evolutionary game theoy

23/10/2014 Evolution of cooperation

30/10/2014 N-armed bandits (stateless reinforcement learning)

6/11/2014 Graphical games

13/11/2014 Reinforcement learning and MDPS

20/11/2014 No course this day

27/11/2014 Sparse Interactions

4/12/2014 Project preparation time

11/12/2014 Selfish load balancing

18/12/2014

25/12/2014
Winter break

1/01/2015

Exam: Article + presentation of group project

BIBLIOGRAPHY

Reinforcement Learning: an introduction
R.S. Sutton and A.G. Barto

Available for free online

4

PART I
Reinforcement Learning

Introduction

5

WHY REINFORCEMENT LEARNING?
Based on ideas from psychology

• Edward Thorndike’s law of effect  
 Satisfaction strengthens behaviour, discomfort weakens it

• B.F. Skinner’s principle of reinforcement 
Skinner Box: train animals by providing (positive) feedback

Learning by interacting with the environment

6

WHY REINFORCEMENT LEARNING?
Control learning

• Robot learning to dock on battery charger
• Learning to choose actions to optimize factory output
• Learning to play Backgammon/other games
• ….

7

THE RL SETTING

• Learning from interactions
• Learning what to do - how to map situations to actions -

so as to maximize a numerical reward signal
8

PRELIMINARIES: SETTING OF RL

•What is it?

• Learning from interaction

• Learning about, from and while interacting with an
external environment

• Learning what to do - how to map situations to
actions - so as to maximize a numerical reward signal

a(t)

s(t+1)

r(t+1)

Environment

10

KEY FEATURES OF RL
• Learner is not told which action to take
• Trial-and-error approach
• Possibility of delayed reward

- Sacrifice short term gains for greater long-term gains
• Need to balance exploration and exploitation

• Possible that states are only partially observable
• Possible needs to learn multiple tasks with same sensors
• In between supervised and unsupervised learning

9

SUPERVISED VS UNSUPERVISED
Supervised learning

Training info = desired (target) outputs

Error = (target output - actual output)

10

Unsupervised learning
Training info = evaluations

Objective: get as much reward as
possible

Supervised
learning system

Reinforcement
learning system

Inputs Outputs Input “states” Output “actions”

THE AGENT-ENVIRONMENT INTERFACE
Agent interacts at discrete time steps t = 0,1,2, ….

• Observes state
• Selects action
• Obtains immediate reward 

• Observes resulting state

11

Agent

Environment

atrt
rt+1

st+1

st

AGENT-ENVIRONMENT INTERFACE

Agent

Environment

action
atst

reward
rt

rt+1
st+1

state

t

. . . st a
rt +1 st +1

t +1a
rt +2 st +2

t +2a
rt +3 st +3

. . .
t +3a

14

st 2 S

at 2 A(st)

rt+1 2 R
st+1

ELEMENTS OF RL
• Time steps need not refer to fixed intervals of real time
• Actions can be

- low level (voltage to motors)
- high level (go left, go right)
- “mental” (shift focus of attention)

• States can be
- low level “sensations” (temperature, (x,y) coordinates)
- high level abstractions, symbolic
- subjective, internal (“surprised”, “lost”)

• The environment is not necessarily known to the agent

12

ELEMENTS OF RL
• State transitions are

- changes to the internal state of the agent
- changes in the environment as a result of the agent’s

action
- can be nondeterministic

• Rewards are
- goals, subgoals
- duration
- …

13

LEARNING HOW TO BEHAVE
• The agent’s policy at time t is

- a mapping from states to action probabilities
-

• Reinforcement learning methods specify how the agent
changes its policy as a result of experience

• Roughly, the agent’s goal is to get as much reward as it
can over the long run

14

⇡t(s, a) = P (at = a|st = s)

⇡

THE OBJECTIVE
• Use discounted return instead of total reward

• where is the discount factor such that

15

Rt = rt+1 + �rt+2 + �2rt+3 + . . . =
1X

k=0

�krt+k+1

0 � ! 1

� 2 [0, 1]

shortsighted farsighted

GOALS AND REWARDS
• Is a scalar reward signal an adequate notion of a goal?

• A goal should specify what we want to achieve, not how
to achieve it

• A goal must be outside the agent’s direct control, thus
outside the agent

• The agent must be able to measure success: 
 - explicitly 
 - frequently during its lifespan

16

EXAMPLE: TIC-TAC-TOE

17

} x’s move

}o’s move

Assume an imperfect oponent: he/she makes mistakes

EXAMPLE:TIC-TAC-TOE
1. Make a table with one entry per state

18

State V(s) Estimated probability of
winning

.5 ?

.5 ?

… …

1 win

… …

0 loss

… …

0 draw

2. Now play lots of games
To pick moves: 
look ahead one step 
 
Pick the next state with the 
highest probability of winning 
 
But 10% of the time pick a
move at random = exploration

x

xxx

x
x

x
x

x
x

o o
o
o o

o

o
o

o
o

EXAMPLE: BACKGAMMON
• Learn to play backgammon
• Immediate reward: 

- +100 if win  
- -100 if lose  
- 0 for all other states

• Trained by playing 1.5 million games against itself  
Now approximately equal to best human player

19

EXAMPLE: POLE BALANCING
• An epsiodic task where episode ends upon failure: 

- reward = +1 for each step 
- return = # steps before failure

• A continuing task with discounted return: 
- reward = -1 upon failure  
- return = , for k steps 
 before failure

• Return is maximized by avoiding failure as long as possible

20

1X

k=0

�krt+k+1

��k

AN EXAMPLE

• As an episodic task where episode ends upon failure

• reward = +1 for each step before failure

• return = number of steps before failure

• As a continuing task with discounted return:

• reward = -1 upon failure, 0 otherwise

• return = , for k steps before failure��k

In either case, return is
maximized by avoiding failure

for as long as possible

20

Go rightGo left

21

EXAMPLE: POLE BALANCING

EXAMPLE: MOUNTAIN CAR
• Get to the top of the hill as quickly as possible (actions: Left or

Right) 
 
 
 
 
 
 
 
reward = -1 for each step not at top of hill 
return = -#steps before reaching top of hill

• Return is maximized by minimizing # steps
22

A UNIFIED NOTATION
• Think of each episode as ending in an absorbing state that

always produces reward of zero:

• can only be 1 if a zero reward absorbing state is
reached

23

s(t) s(t+1)
a(t)

r(t+1)

s(t+2)

r(t+2)
a(t+1) a(t+2)

r(t+3)
r(t+4)

…

�

Rt =
1X

k=0

�krt+k+1

OTHER EXAMPLES
• Robocup Soccer Teams Stone & Veloso, Reidmiller et al.  

World’s best player of simulated soccer, 1999; Runner-up 2000  

• Inventory Management Van Roy, Bertsekas, Lee & Tsitsiklis  
10-15% improvement over industry standard methods  

• Dynamic Channel Assignment Singh & Bertsekas, Nie & Haykin  
World's best assigner of radio channels to mobile telephone calls  

• Elevator Control Crites & Barto 
(Probably) world's best down-peak elevator controller  

• Many Robots  
navigation, bi-pedal walking, grasping, switching between skills...  

• TD-Gammon and Jellyfish Tesauro, Dahl  
World's best backgammon player  

24

PART II
Single state RL

25

EVALUATIVE FEEDBACK
Evaluating actions vs instructing by giving correct actions
• Pure evaluative feedback depends solely on the action taken
• Pure instructive feedback depends not at all on the action taken

Supervised learning = instructive, RL = evaluative

Associative vs Non-assoctive
• Associative: inputs mapped to outputs;  

learn the best output for each input
• Non-associative: “learn” (find) one best output

n-Armed bandit (at least how we treat it) is:
• Non-associative
• Evaluative feedbak

26

ch2. Sutton & Barto

These are unknown action values
Distribution of depends only on

Choose repeatedly from n actions; each choice is called a play
After each play , you get a reward , where

Objective is to maximize the reward in the long run, e.g.
over 1000 plays
To solve the n-armed bandit problem, you must explore a
variety of actions and exploit the best of them

THE N-ARMED BANDIT PROBLEM

27

at

rt

E{rt|at} = Q⇤(at)

rt

at

EXPLORATION/EXPLOITATION DILEMMA
• Suppose you form estimates

• The greedy action at t is

• Constant exploration = bad idea
• Constant exploitation = bad idea
• Stop exploration = bad idea
• Reduce exploration = good idea (maybe)

28

at

Qt(a) ⇡ Q⇤(a)

a⇤t = argmax

a
Qt(a)

at = a

⇤
t ! exploitation

at 6= a

⇤
t ! exploration

ACTION/VALUE METHODS
Methods that adapt action-value estimates and nothing else, 
e.g. suppose by the t-th play, action a has been chosen ka
times, producing rewards , then

29

r1, r2, . . . , rka

Qt(a) =
r1, r2, . . . , rka

ka
Sample average

lim
ka!1

Qt(a) = Q⇤(a)

INCREMENTAL IMPLEMENTATION
The average of the first k rewards is

We could keer a running sum and count for this…

This is a common form for update rules:

30

Qk =
r1, r2, . . . , rk

k

Qk+1 = Qk +
1

k + 1
[rk+1 �Qk]

NewEstimate = OldEstimate + StepSize [Target - OldEstimate]

RANDOM EXPLORATION
• Simplest form of action selection
• Very good for exploration
• Very bad for exploitation

31

at = random action

 -GREEDY EXPLORATION
• The simplest way to balance exploration and exploitation

• Greedy action selection

• -greedy action selection

32

✏

✏

at = a⇤t = argmax

a
Qt(a)

at =

⇢
a⇤t with probability 1 - ✏
random action with probability ✏

10-ARMED TESTBED
• n = 10, so 10 possible actions
• Each is chosen randomly from  

a normal distribution
• Each is also normally distributed:
• 1000 plays
• Repeat the whole thing 2000 times and average the

results

33

Q⇤(a)
⌘(0, 1)

rt ⌘(Q⇤(at), 1)

 -GREEDY ON 10-ARMED TESTBED

34

✏

 = 0 (greedy)

 = 0.01

0

0.5

1

1.5

Average
reward

0 250 500 750 1000

Plays

0%

20%

40%

60%

80%

100%

%
Optimal
action

0 250 500 750 1000

 = 0.1

Plays

 = 0.01

 = 0.1

✏ = 0 (greedy)

• Softmax action selection methods grade action
probabilities by estimated values

• The most common softmax uses a Gibbs or Boltzmann
distribution:

Where is the computational temperature

SOFTMAX ACTION SELECTION

35

eQt(a)/⌧

Pn
b=1 e

Qt(b)/⌧

⌧

Choose action a on play t with probability

• Choosing to be a sample average is appropriate in a
stationary problem (i.e. does not change over time)

• In a non-stationary problem:

TRACKING A NONSTATIONARY PROBLEM

36

Qk+1 = Qk + ↵[rk+1 �Qk]

↵, 0 < ↵  1

= (1� ↵)kQ0 +
kX

i=1

↵(1� ↵)k�iri

for constant

= exponential recency-weighted average

Qk

Q⇤(a)

Qk+1 = Qk +
1

k + 1
[rk+1 �Qk]

OPTIMISTIC INITIAL VALUES
• All methods so far depend on , i.e. they are biased
• Suppose we initialize the action values optimistically

37

Q0(a)

Q0(a) = 5 8a

0%

20%

40%

60%

80%

100%

%
Optimal
action

0 200 400 600 800 1000

Plays

optimistic, greedy
Q0 = 5, = 0

realistic, ε-greedy
Q0 = 0, = 0.1

TO REMEMBER
• N-armed bandits are single stage or stateless
• Simple methods, often used in practice 

f.i. Zone Heating
• Exploration/Exploitation dilemma

38

NEXT LECTURES
• Graphical games
• RL in multi-stage settings (including normal form games)
• Multi-Agent Reinforcement Learning

39

